
Empirical Evaluation of {log}’s Decision
Procedure for Binary Relations

Maximiliano Cristiá1 and Gianfranco Rossi2

1 CIFASIS and UNR, Rosario, Argentina
cristia@cifasis-conicet.gov.ar

2 Università degli studi di Parma, Parma, Italy
gianfranco.rossi@unipr.it

In this document we present the results of an empirical evaluation of the im-
plementation of {log}’s decision procedure for binary relations, namely SATBR.
The empirical evaluation aims at finding out whether SATBR can decide, in
practice, the satisfiability of formulas involving binary relations and their as-
sociated operators in a reasonable time. The fragment of SATBR dealing with
partial functions was already empirically assessed [CRF15]. In that assessment
we used more than 2,000 formulas automatically generated by the Fastest tool
[CAF+14] from 10 different Z specifications [Spi92]. Nevertheless, we cannot use
those formulas for the assessment of the whole SATBR solver because they sel-
dom include binary relations, as they almost always require sets of ordered pairs
to be partial functions.

For that reason, we focus this empirical evaluation on binary relations. That
is, we seek for formulas where sets of ordered pairs are not restricted to be
partial functions. In order to perform an evaluation as objective as possible, we
took as base formulas the standard partitions generated by the Test Template
Framework [SC96] for the relational operators of the Z mathematical toolkit
(ZMT) [Saa97][Spi92, ch. 4]. The standard partitions of the TTF are used in test
case generation applications to generate test cases to exercise the implementation
of the corresponding operators.

Example 1. The standard partition for the ⊕ operator (overriding) is shown in
Figure 1 (note that all formulas in the partition are satisfiable). This partition
can be used, for instance, to generate test cases to test the implementation of a
specification containing the expression H ⊕ {(x, y)} by substituting R with H
and S with {(x, y)}. Note that, in this case, some of the formulas in the partition
become unsatisfiable.

We will call each formula in the TTF partition a base goal. Taking these goals
as a base, we perform the following experiments:

1. Experiment 1. Call {log} on each base goal and count the number of goals
for which at least one solution is found. This experiment gives an idea of
whether or not {log} is able to calculate test cases for the TTF.

2. Experiment 2. Conjoin the constraint oplus(R,S, T ) to each base goal, run
{log} on it and count the number of goals for which at least one solution
is found. This experiment gives an idea of whether or not {log} is able to



Let R,S ∈ X ↔ Y for some X and Y then R⊕ S is partitioned as follows:

R = ∅ ∧ S = ∅
R = ∅ ∧ S 6= ∅
R 6= ∅ ∧ S = ∅
R 6= ∅ ∧ S 6= ∅ ∧ domR = domS

R 6= ∅ ∧ S 6= ∅ ∧ domS ⊂ domR

R 6= ∅ ∧ S 6= ∅ ∧ domR ⊂ domS

R 6= ∅ ∧ S 6= ∅ ∧ (domR ∩ domS) = ∅
R 6= ∅ ∧ S 6= ∅ ∧ (domR ∩ domS) 6= ∅
∧¬(domS ⊆ domR) ∧ ¬(domR ⊆ domS)

Fig. 1. Standard partition for ⊕.

compute oplus(R,S, T ) when R and S are constrained to verify non trivial
conditions.

3. Experiment 3. Conjoin the formula npfun(R)∧npfun(S) to each base goal,
run {log} on it and count the number of goals for which at least one solution
is found. This experiment gives an idea of whether or not {log} is able to
compute test cases where R and S are not allowed to be functions. Note that
some goals become unsatisfiable—for example the first one, as the empty set
is a function. Therefore, this experiment also evaluates the ability of {log}
to determine when a formula is unsatisfiable.

4. Experiment 4. Conjoin the formula oplus(R,S, T ) ∧ npfun(R) ∧ npfun(S)
to each base goal, run {log} on it and count the number of goals for which at
least a solution is found. This experiment is a combination of Experiment
2 and Experiment 3.

5. Experiment 5. Conjoin the formula S = {(x, y)}, where x and y are vari-
ables, to each base goal. This experiment turns some satisfiable goals into
unsatisfiable goals. The experiment represents a typical case in many sys-
tems as it is frequent to modify one element at a time (i.e. {(x, y)}) in a
given data structure (i.e. R).

Example 2. From the fifth base goal in Figure 1 we get the following {log} goals:

– Experiment 1.

R neq {} & S neq {} & dom(S,B) & dom(R,A) & ssubset(B,A).

– Experiment 2.

oplus(R,S,T) & R neq {} & S neq {} &

dom(S,B) & dom(R,A) & ssubset(B,A).



– Experiment 3.

npfun(R) & npfun(S) & R neq {} & S neq {} &

dom(S,B) & dom(R,A) & ssubset(B,A).

– Experiment 4.

oplus(R,S,T) & npfun(R) & npfun(S) & R neq {} & S neq {} &

dom(S,B) & dom(R,A) & ssubset(B,A).

– Experiment 5.

S = {[X,Y]} & R neq {} & S neq {} &

dom(S,B) & dom(R,A) & ssubset(B,A).

Table 1 shows a summary of data collected throughout the experiments. Each
band lists the results of the five experiments for each of the relational operators
discussed in this paper. For each operator the number of base goals is indicated.
Running {log} on each goal yields one of four possible answers:

– success: means that the goal is satisfiable and {log} is able to find a solution
for it;

– time out: {log} is not able to check satisfiability of the goal in the given time
(10s);

– maybe: the goal may be satisfiable and the constraint returned by {log}
may represent a solution for it, but it deserves to be confirmed by further
rewritings. Such an answer comes from the fact that, if {log} is not able to
check satisfiability of the goal in the given time, it tries to deactivate some
rewrite rules (e.g. the elimination of 6=-constraints) in the hope to become
capable of detecting possible inconsistencies. In fact, if the solver ends up in
false, we can anyway conclude that the input constraint is unsatisfiable (since
all applied rewrite rules are guaranteed to be correct); if, on the contrary, the
solver ends up with a constraint in an irreducible form (but not the solved
one), then we cannot conclude that the input constraint is surely satisfiable,
but only that it may be satisfiable.

– false: the goal is unsatisfiable.

In Table 1, column # is the number of answers in each category and column
T is the time, in seconds, spent by {log} in computing all these answers. ε means
that the time is negligible (usually in the order of 10−2s). At the end of the table
the number of total answers in each category for each experiment are shown. As
can be seen, {log} is able to compute meaningful answers for all the goals in
experiments 1, 3 and 5. It also computes meaningful answers for all the goals in
all the experiments for all the base constraints (i.e. comp, dom and inv), and ran
and rimg . Observe, that when a meaningful answer is computed the computing
time is negligible.

The experiments were ran on the following platform: Intel CoreTM i5-2410M
CPU at 2.30GHz with 4 Gb of main memory, running Linux Ubuntu 12.04 (pre-
cise) of 32-bit with kernel 3.2.0-101-generic-pae. {log} 4.9.1-20 over SWI-Prolog



Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Operator Result # T # T # T # T # T

comp (8 goals) success 8 ε 7 ε 5 ε 5 10 4 ε
time out 0 0 0 0 0 0 0 0 0 0
maybe 0 0 0 0 0 0 0 0 0 0
false 0 0 1 ε 3 ε 3 ε 4 ε

dares (7 goals) success 7 ε 6 10 6 ε 3 1 5 ε
time out 0 0 1 13 0 0 3 39 0 0
maybe 0 0 0 0 0 0 0 0 0 0
false 0 0 0 0 1 ε 1 ε 2 ε

dom (4 goals) success 4 ε 4 ε 1 ε 1 ε 1 ε
time out 0 0 0 0 0 0 0 0 0 0
maybe 0 0 0 0 0 0 0 0 0 0
false 0 0 0 0 3 ε 3 ε 3 ε

dres (7 goals) success 7 ε 6 ε 6 ε 6 2 5 ε
time out 0 0 1 13 0 0 0 0 0 0
maybe 0 0 0 0 0 0 0 0 0 0
false 0 0 0 0 1 ε 1 ε 2 ε

inv (5 goals) success 5 ε 5 ε 1 ε 1 ε 1 ε
time out 0 0 0 0 0 0 0 0 0 0
maybe 0 0 0 0 0 0 0 0 0 0
false 0 0 0 0 4 3 4 ε 4 ε

oplus (8 goals) success 8 ε 6 6 5 ε 1 ε 4 ε
time out 0 0 2 26 0 0 4 53 0 0
maybe 0 0 0 0 0 0 0 0 0 0
false 0 0 0 0 3 ε 3 ε 4 ε

ran (5 goals) success 5 ε 5 ε 2 ε 2 ε 1 ε
time out 0 0 0 0 0 0 0 0 0 0
maybe 0 0 0 0 0 0 0 0 0 0
false 0 0 0 0 3 ε 3 ε 4 ε

rares (7 goals) success 7 ε 6 8 6 ε 2 ε 5 ε
time out 0 0 1 13 0 0 3 39 0 0
maybe 0 0 0 0 0 0 1 10 0 0
false 0 0 0 0 1 ε 1 ε 2 ε

rimg (7 goals) success 7 ε 7 7 6 ε 6 3 5 ε
time out 0 0 0 0 0 0 0 0 0 0
maybe 0 0 0 0 0 0 0 0 0 0
false 0 0 0 0 1 ε 1 ε 2 ε

rres (7 goals) success 7 ε 7 7 6 ε 5 1 5 ε
time out 0 0 0 0 0 0 0 0 0 0
maybe 0 0 0 0 0 0 1 10 0 0
false 0 0 0 0 1 ε 1 ε 2 ε

Totals (65 goals) success 65 59 44 32 36
time out 0 5 0 10 0
maybe 0 0 0 2 0
false 0 1 21 21 29

Table 1. Summary of experiments



7.2.3 for i386 was used during the experiments. All the experimental data can be
found in the directory named paper113/goals located in the virtual machine
delivered for “CAV 2016 Artifact Evaluation”. A timeout of 10 seconds was set
for each goal. The execution time was captured by inserting a get_time(Tini)

predicate just before calling {log} and a get_time(Tend) predicate right after
it. Hence, the execution time is just Tend - Tini.

In summary, the results shown in Table 1 provide empirical evidence that the
decision procedure presented in this paper and its implementation on {log} are
useful in practice. Nevertheless, surely there is room for performance improve-
ments such as implementing special cases of the rewrite rules for some particular,
recurring formulas.

References

[CAF+14] Maximiliano Cristiá, Pablo Albertengo, Claudia S. Frydman, Brian Plüss,
and Pablo Rodŕıguez Monetti. Tool support for the Test Template Frame-
work. Softw. Test., Verif. Reliab., 24(1):3–37, 2014.

[CRF15] Maximiliano Cristiá, Gianfranco Rossi, and Claudia S. Frydman. Adding
partial functions to constraint logic programming with sets. TPLP, 15(4-
5):651–665, 2015.

[Saa97] Mark Saaltink. The Z/EVES mathematical toolkit version 2.2 for Z/EVES
version 1.5. Technical report, ORA Canada, 1997.

[SC96] P. Stocks and D. Carrington. A Framework for Specification-Based Test-
ing. IEEE Transactions on Software Engineering, 22(11):777–793, November
1996.

[Spi92] J. M. Spivey. The Z notation: a reference manual. Prentice Hall International
(UK) Ltd., Hertfordshire, UK, UK, 1992.


