
Preservation Proof of T{·} + SAT{·}

Maximiliano Cristiá
Universidad Nacional de Rosario and CIFASIS

Gianfranco Rossi
Università di Parma

April 2, 2022

Abstract

This document contains the preservation proof of T{·}+SAT{·}. This proof is part
of the proof of type safety of T{·} + SAT{·}.

Contents

1 Conventions and notation 2

2 Equality 3

3 Inequality 4

4 Membership 5

5 Union 5

6 Disjointness 8

7 Size (set cardinality) 9

8 Identity 10

9 Inverse (converse) 11

10 Composition 12

11 Not membership 14

12 Not size (not set cardinality) 14

1



1 Conventions and notation

The proof is made for the rewrite rules of the following predicate symbols:

• {=}

• {∈, un, ‖, size}

• {id , inv , comp}

• {6=, /∈,nsize}

The proof for derived constraints (cf. Section 3.5 of the paper) is trivial as any derived
constraint is defined through a formula containing only the above predicate symbols.

In each proof we assume the left hand side (l.h.s., i.e. the constraint being rewritten) of
the rewrite rule is correctly typed and we prove that the right hand side (r.h.s.) is correctly
typed by assigning a type for each new variable and using only the types appearing in the
l.h.s. (that is we prove that D(t1 : τ1; . . . ; tk : τk ; v1 : τ ′1; . . . , vm : τ ′m) ∧ Φ is a well-typed
formula).

Notational conventions

• l.h.s and r.h.s always refer to the sides of the current rewrite rule.

• When types τ, τi are mentioned in the proof, the correct statement is “there exist a
type τ such that. . . ” or an equivalent phrase. For instance:

If {t1 tA} 6= {t2 tB} is correctly typed then both sets are of the same type:
set(τ).

should be read as:

If {t1 tA} 6= {t2 tB} is correctly typed then both sets are of the same type:
set(τ), for some type τ .

• Names in SmallCaps refer to rules in Figures 1 and 2 of the article.

• A ⊆ B is equivalent to un(A,B ,B).

• Variable names n and N (possibly with sub and superscripts) are used to denote
fresh variables.

• ẋ , for any name x , is a shorthand for x is a variable.

2



2 Equality

{t1, . . . , tm t Ȧ} = {u1, . . . , un t Ȧ} →
t1 = uj ∧ {t2, . . . , tm t Ȧ} = {u1, . . . , uj−1, uj+1, . . . , un t Ȧ}
∨ t1 = uj ∧ {t1, . . . , tm t Ȧ} = {u1, . . . , uj−1, uj+1, . . . , un t Ȧ}
∨ t1 = uj ∧ {t2, . . . , tm t Ȧ} = {u1, . . . , un t Ȧ}
∨ Ȧ = {t1 tN } ∧ {t2, . . . , tm tN } = {u1, . . . , un tN }

(2.1)

Proof. If {t1, . . . , tm t Ȧ} = {u1, . . . , un t Ȧ} is type correct then: (i) A is of type set(τ),
and (ii) t1, . . . , tm , u1, . . . , un are all of type τ . The first disjunct is proved as follows.
t1 = uj is correctly typed because both are of the same type by (ii); {t2, . . . , tm t Ȧ} =

{u1, . . . , uj−1, uj+1, . . . , un t Ȧ} is correctly typed as they are subsets of the sets at the left
hand side. The second and third disjuncts are proved in the same way. In the last disjunct,
N is assigned type set(τ), then A = {t1 t N } is correctly typed by (i), (ii) and the type
assigned to N ; and {t2, . . . , tm t N } = {u1, . . . , un t N } is type correct because of (ii) and
the type assigned to N .

{xtA} = {y t B} →
x = y ∧ A = B

∨ x = y ∧ {x tA} = B

∨ x = y ∧ A = {y t B}
∨ A = {y tN } ∧ {x tN } = B

(2.2)

Proof. This proof is in the paper.

[k ,m] = ∅→ m < k (2.3)

Proof. If [k ,m] = ∅ is type correct, then m and k are of type int and so m < k is correctly
typed.

[k ,m] = {x tA} → {x tA} ⊆ [k ,m] ∧ size({x tA},m − k + 1) (2.4)

Proof. If [k ,m] = {x tA} is correctly typed then: (i) k ,m are of type int, and (ii) [k ,m] and
{x tA} are of type set(int). Hence, {x tA} ⊆ [k ,m] is correctly typed, and (iii) m − k + 1
is of type int by (i). (i) and (ii) implies that size({x t A},m − k + 1) is type correct (rule
Sz).

[k ,m] = [i , j ]→ (k ≤ m ∧ i ≤ j ∧ k = i ∧ m = j ) ∨ (m < k ∧ j < i) (2.5)

3



Proof. If [k ,m] = [i , j ] is correctly typed then k ,m, i , j are of type int and so all the integer
constraints are type correct.

{t1 tA} 6= {t2 t B} →
n ∈ {t1 tA} ∧ n /∈ {t2 t B}
∨ n /∈ {t1 tA} ∧ n ∈ {t2 t B}

(2.6)

Proof. If {t1 tA} 6= {t2 tB} is correctly typed then both sets are of the same type: set(τ).
Hence, τ is the type assigned to n. In this case all the membership and not membership
constraints at the right hand side are correctly typed.

[k ,m] 6= ∅→ k ≤ m (2.7)

Proof. If [k ,m] 6= ∅ is correctly typed then k ,m are of type int and so the arithmetic
constraint at the right hand side is type correct.

[k ,m] 6= [i , j ]→ (2.8)

(k ≤ m ∧ (m 6= j ∨ j < i ∨ k 6= i)) ∨ (i ≤ j ∧ (m 6= j ∨ m < k ∨ k 6= i))

Proof. If [k ,m] 6= [i , j ] is correctly typed then k ,m, i , j are of type int and so all the
arithmetic constraints are type correct.

3 Inequality

f (t1, . . . , tn) 6= f (u1, . . . , un)→ t1 6= u1 ∨ · · · ∨ tn 6= un (3.1)

where f is a (·, ·) or ·?·

Proof. If f is (·, ·) then the rule becomes

(t1, t2) 6= (u1, u2)→ t1 6= u1 ∨ t2 6= u2

Now, if (t1, t2) 6= (u1, u2) is well-typed then: (a) t1, u1 are of type τ1; and (b) t2, u2 are of
type τ2. So, t1 6= u1 well-type by a; and t2 6= u2 is well-typed by (b).

If f is ·?· then the rule becomes

t1?t2 6= u1?u2 → t2 6= u2

Now, if t1?t2 6= u1?u2 is well-typed then: (a) t1, u1 ∈ B and t1 = u1; and (b) t2, u2 ∈ A. So,
t2 6= u2 is well-typed by (b).

[k ,m] 6= ∅→ k ≤ m (3.2)

4



Proof. If [k ,m] 6= ∅ is correctly typed then k ,m are of type int and so the integer constraint
is well-typed.

[k ,m] 6= [i , j ]→ (3.3)

(k ≤ m ∧ (m 6= j ∨ j < i ∨ k 6= i)) ∨ (i ≤ j ∧ (m 6= j ∨ m < k ∨ k 6= i))

Proof. If [k ,m] 6= [i , j ] is correctly typed then k ,m, i , j are of type int and so the integer
constraints are well-typed.

4 Membership

x ∈ {y tA} → x = y ∨ x ∈ A (4.1)

Proof. If x ∈ {y t A} is correctly typed then {y t A} is of type set(τ) and x and y are of
type τ . Hence, x = y and x ∈ A are correctly typed by Eq and Mem, respectively.

x ∈ Ȧ→ Ȧ = {x tN } (4.2)

Proof. If x ∈ A is correctly typed then A is of type set(τ) and x is of type τ . Then, we
assign set(τ) as the type of N . In this case, Ȧ = {x tN }.

x ∈ [k ,m]→ k ≤ x ≤ m (4.3)

Proof. If x ∈ [k ,m] is correctly typed then x , k ,m are of type int and so the integer
constraint at the r.h.s. is type correct.

5 Union

un(Ȧ, Ȧ,B)→ Ȧ = B (5.1)

Proof. If un(Ȧ, Ȧ,B) is type correct then A and B are of the same type and so Ȧ = B is
correctly typed.

un(A,B ,∅)→ A = ∅ ∧ B = ∅ (5.2)

Proof. If un(A,B ,∅) is type correct then A and B are of the same set type and so A = ∅
and B = ∅ are correctly typed.

5



un(∅,A, Ḃ)→ Ḃ = A (5.3)

Proof. If un(∅,A, Ḃ) is type correct then A and B are of the same type and so Ḃ = A is
correctly typed.

un(A,∅, Ḃ)→ Ḃ = A (5.4)

Proof. The proof is like the previous one.

un({t t C},A, Ḃ)→
(t /∈ A ∧ un(N1,A,N )

∨ A = {t tN2} ∧ un(N1,N2,N ))

∧ {t t C} = {t tN1} ∧ Ḃ = {t tN }

(5.5)

Proof. If un({t tC},A, Ḃ) is type correct then C ,A, Ḃ are of type set(τ) and t of type τ .
Then set(τ) is the type for N ,N1,N2. In this way, t /∈ A is correctly typed because t of
type τ and A is of type set(τ); all the union constraints are correctly typed because all of
their arguments are of type set(τ); and the same holds for all the equality constraints.

un(A, {t t C}, Ḃ)→
(t /∈ A ∧ un(N1,A,N )

∨ A = {t tN2} ∧ un(N1,N2,N ))

∧ {t t C} = {t tN1} ∧ Ḃ = {t tN }

(5.6)

Proof. Given that this rule is symmetric w.r.t. the previous one, the proof is similar.

un(A,B , {t t C})→
(A = {t tN1} ∧ un(N1,B2,N )

∨ B = {t tN1} ∧ un(A,N1,N )

∨ A = {t tN1} ∧ B = {t tN2} ∧ un(N1,N2,N ))

∧ {t t C} = {t tN }

(5.7)

Proof. Given that this rule is symmetric w.r.t. the previous one, the proof is similar.

un([k ,m],A,B)→ (5.8)

m < k ∧ A = B

∨ k ≤ m ∧ Ṅ ⊆ [k ,m] ∧ size(Ṅ ,m − k + 1) ∧ un(Ṅ ,A,B)

6



Proof. If un([k ,m],A,B) is type correct then: (i) A,B are of type set(int); and (ii) k ,m
are of type int. We assign set(int) as the type for N . In turn, (ii) implies that all the
arithmetic constraints are type correct and that (iii) m−k +1 is of type int. A = B is type
correct as both are of the same type by (i); Ṅ ⊆ [k ,m] is type correct as both terms are of
the same type by (i) and the type assigned to N ); un(Ṅ ,A,B) is type correct because all
the arguments have the same type by (i) and the type assigned to N ; size(Ṅ ,m − k + 1)
is type correct because of the type assigned to N and due to (iii).

un(A, [k ,m],B)→ (5.9)

m < k ∧ A = B

∨ k ≤ m ∧ Ṅ ⊆ [k ,m] ∧ size(Ṅ ,m − k + 1) ∧ un(A, Ṅ ,B)

Proof. Given that this rule is symmetric w.r.t. the previous one, the proof is similar.

un(A,B , [k ,m])→ (5.10)

m < k ∧ A = ∅ ∧ B = ∅

∨ (k ≤ m ∧ Ṅ ⊆ [k ,m] ∧ size(Ṅ ,m − k + 1) ∧ un(A,B , Ṅ ))

Proof. Given that this rule is symmetric w.r.t. the previous one, the proof is similar.

un([k ,m], [i , j ],A)→ (5.11)

(m < k ∧ j < i ∧ A = ∅)

∨ (m < k ∧ i ≤ j ∧ [i , j ] = A)

∨ (k ≤ m ∧ j < i ∧ [k ,m] = A)

∨ (k ≤ m ∧ i ≤ j

∧ Ṅ1 ⊆ [k ,m] ∧ size(Ṅ1,m − k + 1)

∧ Ṅ2 ⊆ [i , j ] ∧ size(Ṅ2, j − i + 1)

∧ un(Ṅ1, Ṅ2,A))

Proof. If un([k ,m], [i , j ],A) type correct then: (i) k ,m, i , j are of type Itype; and (ii) A is
of type set(int). We assign set(int) as the type for N1,N2. Hence, (i) implies that all the
integer constraints are correctly typed and that (iii) m − k + 1, j − i + 1 are of type int.
Then: A = ∅ is type correct because A is of a set type by (ii); [i , j ] = A and [k ,m] = A are
type correct because all of the terms are of the same type by (i) and rule Int; Ṅ1 ⊆ [k ,m]
and Ṅ2 ⊆ [i , j ] are type correct because all of the terms are of the same type by (i) and rule
Int; size(Ṅ1,m−k +1) and size(Ṅ2, j − i +1) are type correct because of the type assigned
to N1,N2 and due to (iii); and un(Ṅ1, Ṅ2,A) is type correct because all the arguments are
of the same type by (ii) and the type assigned to N1,N2.

7



un([k ,m],A, [i , j ])→ (5.12)

j < i ∧ [k ,m] = A = ∅
∨ i ≤ j ∧ m < k ∧ A = [i , j ]

∨ k ≤ m ∧ i ≤ j

∧ Ṅ1 ⊆ [k ,m] ∧ size(Ṅ1,m − k + 1)

∧ Ṅ2 ⊆ [i , j ] ∧ size(Ṅ2, j − i + 1)

∧ un(Ṅ1,A, Ṅ2)

Proof. Given that this rule is symmetric w.r.t. the previous one, the proof is similar.

un(A, [k ,m], [i , j ])→ (5.13)

j < i ∧ [k ,m] = A = ∅
∨ i ≤ j ∧ m < k ∧ A = [i , j ]

∨ k ≤ m ∧ i ≤ j

∧ Ṅ1 ⊆ [k ,m] ∧ size(Ṅ1,m − k + 1)

∧ Ṅ2 ⊆ [i , j ] ∧ size(Ṅ2, j − i + 1)

∧ un(A, Ṅ1, Ṅ2)

Proof. Given that this rule is symmetric w.r.t. the previous one, the proof is similar.

un([k ,m], [i , j ], [p, q ])→ (5.14)

(m < k ∧ [i , j ] = [p, q ])

∨ (j < i ∧ [k ,m] = [p, q ])

∨ (k ≤ m ∧ i ≤ j ∧ k ≤ i ∧ i ≤ m + 1 ∧ m ≤ j ∧ p = k ∧ q = j )

∨ (k ≤ m ∧ i ≤ j ∧ k ≤ i ∧ i ≤ m + 1 ∧ j < m ∧ p = k ∧ q = m)

∨ (k ≤ m ∧ i ≤ j ∧ i < k ∧ k ≤ j + 1 ∧ m ≤ j ∧ p = i ∧ q = j )

∨ (k ≤ m ∧ i ≤ j ∧ i < k ∧ k ≤ j + 1 ∧ j < m ∧ p = i ∧ q = m)

Proof. If un([k ,m], [i , j ], [p, q ]) is type correct then: (i) k ,n, i , j , p, q are of type int, and
(ii) [k ,m], [i , j ], [p, q ] are of type set(int). Hence, all the integer constraints are correctly
typed by (i); and [i , j ] = [p, q ] and [k ,m] = [p, q ] are correctly typed by (ii).

6 Disjointness

Ȧ ‖ Ȧ→ Ȧ = ∅ (6.1)

8



Proof. If Ȧ ‖ Ȧ is type correct then A is of some set type and so Ȧ = ∅ is correctly
typed.

{t t B} ‖ Ȧ→ t /∈ Ȧ ∧ Ȧ ‖ B (6.2)

Proof. If {t t B} ‖ Ȧ is correctly typed then: (i) A,B are of type set(τ), and (ii) t is of
type τ . Hence, t /∈ Ȧ is well-typed by (i) and (ii), and Ȧ ‖ B is well-typed by (i).

Ȧ ‖ {t t B} → t /∈ Ȧ ∧ Ȧ ‖ B (6.3)

Proof. Given that this rule is symmetric w.r.t. the previous one, the proof is similar.

{t1 tA} ‖ {t2 t B} → t1 6= t2 ∧ t1 /∈ B ∧ t2 /∈ A ∧ A ‖ B (6.4)

Proof. If {t1 tA} ‖ {t2 t B} is well-typed then: : (i) A,B are of type set(τ), and (ii) t1, t2
are of type τ . Hence, t1 6= t2 is well-typed by (ii); t1 /∈ B is well-typed by (i) and (ii);
t2 /∈ Ȧ is well-typed by (i) and (ii), and Ȧ ‖ B is well-typed by (i).

[k ,m] ‖ [i , j ]→ m < k ∨ j < i ∨ (k ≤ m ∧ i ≤ j ∧ (m < i ∨ j < k)) (6.5)

Proof. If [k ,m] ‖ [i , j ] is well-typed then: k ,m, i , j are of type int. Hence all the integer
constraints are well-typed.

[k ,m] ‖ A→ (6.6)

m < k ∨ (k ≤ m ∧ Ṅ ⊆ [k ,m] ∧ size(Ṅ ,m − k + 1) ∧ Ṅ ‖ A)

Proof. If [k ,m] ‖ A is well-typed then: (i) [k ,m],A are of type set(int), and (ii) k ,m are of
type int. set(int) is the type assigned to N (iii). Then, all the integer constraints are well-
typed; (iv) m−k+1 is of type int; Ṅ ⊆ [k ,m] is well-typed by (i) and (iii); size(Ṅ ,m−k+1)
is well-typed by (iii) and (iv); and Ṅ ‖ A is well-typed by (iii) and (i).

7 Size (set cardinality)

size(∅,m)→ m = 0 (7.1)

Proof. If size(∅,m) is well-typed then m is of type int and so m = 0 is well-typed.

9



size(A, 0)→ A = ∅ (7.2)

Proof. If size(A, 0) is well-typed then A is of type set(τ) and so A = ∅ is well-typed.

If e is a compound arithmetic expression:

size(A, e)→ size(A, ṅ) ∧ ṅ = e ∧ 0 ≤ ṅ (7.3)

Proof. If size(A, e) is well-typed then: (i) A is of type set(τ), and (ii) e is of type int. int
is the type assigned to n (iii). Hence: size(A, ṅ) is type correct by (i) and (iii); ṅ = e is
type correct by (iii) and (ii); and 0 ≤ ṅ is type correct by (iii).

size({x tA},m)→
x /∈ A ∧ m = 1 + ṅ ∧ size(A, ṅ) ∧ 0 ≤ ṅ (7.4)

∨ A = {x t Ṅ } ∧ x /∈ Ṅ ∧ size(Ṅ ,m)

Proof. If size({x tA},m) is type correct then: (i) A is of type set(τ), (ii) x is of type τ , and
(iii) m is of type int. Types are assigned as follows: (iv) set(τ) is to N , and (v) int to n.
Now, 1+n is of type int by (v), so m = 1+ ṅ is well-typed by (iii). In turn, each constraint
is well-typed as follows: x /∈ A by (i) and (ii); size(A, ṅ) by (i) and (v); A = {x t Ṅ } by
(i), (ii) and (iv); x /∈ Ṅ by (ii) and (iv); and size(Ṅ ,m) by (iv) and (iii).

size([k ,m], p)→ (m < k ∧ p = 0) ∨ (k ≤ m ∧ p = m − k + 1) (7.5)

Proof. If size([k ,m], p) is correctly typed then k ,m, p are of type int and so all the integer
constraints are well-typed.

8 Identity

id(∅,R)→ R = ∅ (8.1)

Proof. If id(∅,R) is type correct then R is of type rel(τ, τ) and so R = ∅ is well-typed.

id(A,∅)→ A = ∅ (8.2)

Proof. If id(A,∅) is type correct then A is of type set(τ) and so A = ∅ is well-typed.

id({x tA},R)→ R = {(x , x ) tN } ∧ id(A,N ) (8.3)

10



Proof. If id({x t A},R) is correctly typed then: (i) x is of type τ ; (ii) A is of type set(τ);
and (iii) R is of type rel(τ, τ). Type rel(τ, τ) is assigned to N (iv). Hence: R = {(x , x )tN }
is type correct by (i), (iii) and (iv); and id(A,N ) is type correct by (ii) and (iv).

id(A, {(x , y) t R})→ x = y ∧ A = {x tN } ∧ id(N ,R) (8.4)

Proof. If id(A, {(x , y) tR}) is correctly typed then: (i) x , y are of type τ ; (ii) A is of type
set(τ); and (iii) R is of type rel(τ, τ). Type set(τ) is assigned to N (iv). Hence, constraints
are well-typed as follows: x = y by (i); A = {x t N } by (i), (ii) and (iv); and id(N ,R) is
type correct by (iii) and (iv).

9 Inverse (converse)

inv(R,∅)→ R = ∅ (9.1)

Proof. If inv(R,∅) is well-typed then R is of type rel(τ1, τ2) and so R = ∅ is well-typed.

inv(∅,S )→ S = ∅ (9.2)

Proof. Given that this rule is symmetric w.r.t. the previous one, the proof is similar.

inv(Ṙ, {(x1, y1), . . . , (xn , yn) t Ṙ})→
Ṙ = {(x1, y1), (y1, x1) tN } ∧ inv(N , {(x2, y2), . . . , (xn , yn) tN })

(9.3)

Proof. If inv(Ṙ, {(x1, y1), . . . , (xn , yn)tṘ}) is correctly typed then: (a) R is of type rel(τ, τ);
and (b) xi , yi are of type τ . (c) rel(τ, τ) is the type assigned to N . Then: Ṙ = {(x1, y1), (y1, x1)t
N } is correctly typed by (a)-(c), Prod, Ext and Eq; and inv(N , {(x2, y2), . . . , (xn , yn) t
N }) is type correct by (b), (c), Prod and Ext.

inv({(x1, y1), . . . , (xn , yn) t Ṡ}, Ṡ )→
Ṡ = {(x1, y1), (y1, x1) tN } ∧ inv({(x2, y2), . . . , (xn , yn) tN },N )

(9.4)

Proof. Given that this rule is symmetric w.r.t. the previous one, the proof is similar.

11



inv({(x1, y1), . . . , (xn , yn) t Ṙ}, {(a1, b1), . . . , (am , bm) t Ṙ})→
{(y1, x1) tN1} = {(a1, b1), . . . , (am , bm)}
∧ un(Ṙ,N1,N2) ∧ inv({(x2, y2), . . . , (xn , yn) t Ṙ},N2)

∨ (y1, x1) /∈ {(a1, b1), . . . , (am , bm)} ∧ (x1, y1) /∈ {(a1, b1), . . . , (am , bm)}
∧ Ṙ = {(x1, y1), (y1, x1) tN }
∧ ((y1, x1) /∈ {(x1, y1), . . . , (xn , yn)}
∧ inv({(x2, y2), . . . , (xn , yn) tN }, {(a1, b1), . . . , (am , bm) tN })
∨ {(y1, x1) tN3} = {(x2, y2), . . . , (xn , yn)} ∧ un(N ,N3,N4)

∧ inv(N4, {(a1, b1), . . . , (am , bm) tN }))
∨ (y1, x1) /∈ {(a1, b1), . . . , (am , bm)}
∧ {(x1, y1) tN5} = {(a1, b1), . . . , (am , bm)}
∧ Ṙ = {(y1, x1) tN } ∧ un(N ,N5,N6)

∧ inv({(x2, y2), . . . , (xn , yn) tN },N6)

(9.5)

Proof. If inv({(x1, y1), . . . , (xn , yn)tṘ}, {(a1, b1), . . . , (am , bm)tṘ}) is correctly typed then:
(a) R is of type rel(τ, τ); and (b) xi , yi , ai , bi are of type τ . (c) rel(τ, τ) is the type assigned
to N ,Ni . All three branches are proved in a similar way; we will do it only for the last one.
Each constraint in the last branch is well-typed as follows: (y1, x1) /∈ {(a1, b1), . . . , (am , bm)}
by (b), Prod, Ext and Mem; {(x1, y1) tN5} = {(a1, b1), . . . , (am , bm)} by (b), (c), Prod,
Ext and Eq; Ṙ = {(y1, x1) t N } by (a)-(c), Prod, Ext and Eq; un(N ,N5,N6) by (c);
and inv({(x2, y2), . . . , (xn , yn) tN },N6) by (b)-(c), Prod and Ext.

inv(R, {(y , x ) t S})→ R = {(x , y) tN } ∧ inv(N ,S ) (9.6)

Proof. If inv(R, {(y , x ) t S}) is type correct then: (a) R is of type rel(τ1, τ2); (b) y is of
type τ2; (c) x is of type τ1; and (d) S is of type rel(τ2, τ1). (e) rel(τ1, τ2) is the type assigned
to N . Then: R = {(x , y) t N } is correctly typed by (a)-(c), (e), Prod, Ext and Eq; and
inv(N ,S ) is type correct by (d) and (e).

inv({(x , y) t R},S )→ S = {(y , x ) tN } ∧ inv(R,N ) (9.7)

Proof. Given that this rule is symmetric w.r.t. the previous one, the proof is similar.

10 Composition

comp(∅,S ,T )→ T = ∅ (10.1)

12



Proof. If comp(∅,S ,T ) is correctly typed then S is of type rel(τ2, τ3) and T is of type
rel(τ1, τ3), which implies that T = ∅ is well-typed.

comp(R,∅,T )→ T = ∅ (10.2)

Proof. Given that this rule is symmetric w.r.t. the previous one, the proof is similar.

comp({(x , u)}, {(t , z )},T )→ (u = t ∧ T = {(x , z )}) ∨ (u 6= t ∧ T = ∅) (10.3)

Proof. If comp({(x , u)}, {(t , z )},T ) is type correct then: (a) x is of type τ1; (b) u, t are of
type τ2; (c) z is of type τ3; and (d) T is of type rel(τ1, τ3). So each constraint is well-typed
as follows: u = t by (b); T = {(x , z )} by (a), (c), (d), Prod and Ext; u 6= t by (b); and
T = ∅ by (d).

comp({(x , u) t R}, {(t , z ) t S},∅)→
u 6= t

∧ comp({(x , u)},S ,∅) ∧ comp(R, {(t , z )},∅) ∧ comp(R,S ,∅)

(10.4)

Proof. If comp({(x , u)tR}, {(t , z )tS},∅) is type correct then: (a) x is of type τ1; (b) u, t
are of type τ2; (c) z is of type τ3; (d) R is of type rel(τ1, τ2); and (e) S is of type rel(τ2, τ3).
So each constraint is well-typed as follows: u 6= t by (b); comp({(x , u)},S ,∅) by (a), (b),
(e), Prod and Ext; comp(R, {(t , z )},∅) by (b)-(d), Prod and Ext; and comp(R,S ,∅)
by (d)-(e).

comp({(x , t) t R}, {(u, z ) t S}, Ṫ )→
comp({(x , t)}, {(u, z )},N1)

∧ comp({(x , t)},S ,N2) ∧ comp(R, {(u, z )},N3)

∧ comp(R,S ,N4)

∧ un(N1,N2,N3,N4, Ṫ )

(10.5)

un(N1,N2,N3,N4, Ṫ ) is a shorthand for un(N1,N2,A) ∧ un(A,N3,B) ∧ un(B ,N4, Ṫ ),
for some A and B (of the same type than Ni and T ).

Proof. If comp({(x , t) tR}, {(u, z ) t S}, Ṫ ) is well-typed then: (a) x is of type τ1; (b) u, t
are of type τ2; (c) z is of type τ3; (d) R is of type rel(τ1, τ2); (e) S is of type rel(τ2, τ3);
and (f) T is of type rel(τ1, τ3). (g) rel(τ1, τ3) is the type assigned to N1,N2,N3,N4. So
each constraint is well-typed as follows: comp({(x , t)}, {(u, z )},N1) by (a)-(c) and (g);
comp({(x , t)},S ,N2) by (a), (b), (e) and (g); comp(R, {(u, z )},N3) by (b)-(d) and (g);
comp(R,S ,N4) by (d), (e) and (g); and un(N1,N2,N3,N4, Ṫ ) by (f) and (g).

13



comp(R,S , {(x , z ) t T})→
un(Nx ,Nrt ,R) ∧ un(Nz ,Nst ,S )

Nx = {(x ,n) tN1} ∧ Nz = {(n, z ) tN2}
∧ comp({(x , x )},N1,N1) ∧ comp(N2, {(z , z )},N2)

∧ comp(Nx ,Nst ,N3) ∧ comp(Nrt ,Nz ,N4) ∧ comp(Nrt ,Nst ,N5)

∧ un(N3,N4,N5,T )

(10.6)

un(N3,N4,N5,T ) is a shorthand for un(N3,N4,A) ∧ un(A,N5,T ), for some A (of the
same type than Ni and T ).

Proof. If comp(R,S , {(x , z ) t T}) is well-typed then: (a) R is of type rel(τ1, τ2); (b)
S is of type rel(τ2, τ3); (c) x is of type τ1; (d) z is of type τ3; and (e) T is of type
rel(τ1, τ3). (f) rel(τ1, τ2) is the type assigned to Nx ,Nrt ,N1; (g) rel(τ2, τ3) is the type as-
signed to Nz ,Nst ,N2; (h) τ2 is the type assigned to n; (i) rel(τ1, τ3) is the type assigned
to N3,N4,N5. So each constraint is well-typed as follows: un(Nx ,Nrt ,R) by (a) and (f);
un(Nz ,Nst ,S ) by (b) and (g); Nx = {(x ,n) t N1} by (f), (c) and (h); Nz = {(n, z ) t N2}
by (g), (h) and (d); comp({(x , x )},N1,N1) by (c) and (f); comp(N2, {(z , z )},N2) by (d)
and (g); comp(Nx ,Nst ,N3) by (f), (g) and (i); comp(Nrt ,Nz ,N4) by (f), (g) and (i);
comp(Nrt ,Nst ,N5) by (f), (g) and (i); and un(N3,N4,N5,T ) by (i) and (e).

11 Not membership

x /∈ {y tA} → x 6= y ∧ x /∈ A (11.1)

Proof. If x /∈ {y t A} is correctly typed then {y t A} is of type set(τ) and x , y are of type
τ . Hence, x 6= y and x /∈ A are correctly typed by Eq and Mem, respectively.

x /∈ [k ,m]→ x < k ∨ m < x (11.2)

Proof. If x /∈ [k ,m] is correctly typed then x , k ,m are of type int and so the integer
constraints at the r.h.s. are type correct.

12 Not size (not set cardinality)

nsize([k ,m], p)→ (m < k ∧ p 6= 0) ∨ (k ≤ m ∧ p 6= m − k + 1) (12.1)

Proof. If nsize([k ,m], p) is correctly typed then k ,m, p are of type int and so all the integer
constraints are well-typed.

nsize(A, p)→ size(A,n) ∧ n 6= p (12.2)

14



Proof. If nsize(A, p) is well-typed then: (a) A is of type set(τ); and (b) p is of type int. (c)
The type assigned to n is int. Then size(A,n) is well-typed too by (a) and (c); and n 6= p
is type correct by (b) and (c).

15


