
{log}
Applications to Software

Specification and Verification
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1 {log} installation

{log} (‘setlog’) is a constraint logic programming language. Besides it’s a satisfiability solver and as
such it can be used as an automated theorem prover. One of {log}’s distinctive features is that sets are
first-class entities of the language.
{log}was first developed by Gianfranco Rossi and his PhD students in Italy during the mid ’90. Since

2012 Gianfranco Rossi and Maximiliano Cristiá work together in extending {log} to binary relations and
related theories.

{log} is a Prolog program. Then, you first need to install a Prolog interpreter. So far {log} runs
only on SWI-Prolog (http://www.swi-prolog.org). After installing SWI-Prolog you must download
{log} and all the library files from here:

http://people.dmi.unipr.it/gianfranco.rossi/setlog.Home.html

This document is focused on showing how Z specifications can be translated into {log} and, later, on
how {log} can be used to run simulations and automated proofs. This can help users of other specification
languages such as B and VDM to use {log} along the same lines. The presentation is rather informal
and user-oriented. More technical and formal presentations can be found in the papers published by the
authors. We also assume the reader has at least a basic knowledge of the Z notation.

2 Translating Z specifications into {log}

Many Z specifications can be easily translated into {log}. This means that {log} can serve as a program-
ming language in which a prototype of a Z specification can be immediately implemented.

We will consider Z specifications of a very specific form. Here, we will show how these Z specifica-
tions can be translated into {log}. To that end we will use a running example. Later on we will explain
with some detail how Z elements not appearing in the example can be translated into {log}; we will see
that some Z elements can be translated in more than one way.

2.1 The running example

The specification to be used as running example is one of the classic Z specifications first used by Spivey
in several articles and books [1]. It’s known as the birthday book. It’s a system which records people’s
birthdays, and is able to issue a reminder when the day comes round.

2.1.1 The Z specification

In our account of the system, we need to deal with people’s names and with dates. Then, we introduce
the following basic types.

[NAME,DATE]

Now we can define the state schema of the specification as follows.

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

http://www.swi-prolog.org
http://people.dmi.unipr.it/gianfranco.rossi/setlog.Home.html
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where known is the set of names with birthdays recorded; and birthday is a function which, when applied
to certain names, gives the birthdays associated with them.

The initial state of the birthday book is the following.

BirthdayBookInit
BirthdayBook

known = /0
birthday = /0

The following schema describes the predicates that should be state invariants.

BirthdayBookInv
BirthdayBook

known = dombirthday

As can be seen, the value of known can be derived from the value of birthday. This makes known a
derived component. It would be possible to specify the system without mentioning known at all. How-
ever, giving names to important concepts helps to make specifications more readable. The specification
doesn’t commit the programmer to represent known explicitly in an implementation.

The first operation we specify is how to add a birthday to the birthday book. As always we first
model the normal behavior, then the abnormal behaviors and finally we assemble all the schemas in a
single schema expression.

AddBirthdayOk
∆BirthdayBook
name? : NAME
date? : DATE

name? /∈ known
known′ = known∪{name?}
birthday′ = birthday∪{name? 7→ date?}

NameAlreadyExists
ΞBirthdayBook
name? : NAME

name? ∈ known

AddBirthday == AddBirthdayOk ∨ NameAlreadyExists

The second operation to be specified is the one that shows the birthday of a given person.
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FindBirthdayOk
ΞBirthdayBook
name? : NAME
date! : DATE

name? ∈ known
date! = birthday(name?)

NotAFriend
ΞBirthdayBook
name? : NAME

name? /∈ known

FindBirthday == FindBirthdayOk ∨ NotAFriend

Finally we have an operation listing all the persons whose birthday is a given date.

Remind
ΞBirthdayBook
today? : DATE
cards! : PNAME

cards! = dom(birthdayB{today?})

2.1.2 The {log} code

The {log} code of the translation of the Z specification should be saved in a file with extension .slog.
It is convenient to put this file in the same folder where {log} was installed.

Most Z schemas are translated into {log} clauses. A {log} clause is a sort of subroutine or subpro-
gram or procedure of a regular programming language. Each clause can receive zero or more arguments.
When a Z schema representing an operation is translated, the corresponding clause receives as arguments
all the state variables, all the input variables and all the output variables.

In {log} variables must always begin with an uppercase letter or the underscore character (_), al-
though this is usually saved for special cases. Any identifier beginning with a lowercase letter is a
constant. The prime character (′) cannot be used as part of a variable’s name. Therefore, in order to
denote the after state variables we will put the underscore character at the end (‘_’). Then, for instance,
the state variables of the birthday book will be Known and Birthday; and those of the after state will
be Known_ and Birthday_. In the same way, ? y ! cannot be part of variables’ names in {log}. In
these cases we will use _i and _o as suffixes denoting input and output variables, respectively. Then,
for example, name? (see schema AddBirthdayOk) becomes Name_i in {log}; and cards! (see schema
Remind) becomes Cards_o.

Hence, the interface of the {log} clause corresponding to the Z operation named AddBirthday is the
following:

addBirthday(Known,Birthday,Name_i,Date_i,Known_,Birthday_)
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where Name_i and Date_i correspond to input variables name? and date? declared in AddBirthday.
Note that althugh AddBirthday begins with an uppercase letter addBirthday begins with a lowercase
letter because {log} clauses must begin in that way; on the other hand, although name? and date? begin
with lowercase letters, Name_i and Date_i begin with uppercase letters because we want them to vari-
able arguments. Finally, Known and Birthday represent the before state while Known_ y Birthday_

represent the after state.
Now we can give the definition of the addBirthday clause:

addBirthday(Known,Birthday,Name_i,Date_i,Known_,Birthday_) :-

addBirthdayOk(Known,Birthday,Name_i,Date_i,Known_,Birthday_)

or

nameAlreadyExists(BirthdayBook,Name_i,BirthdayBook_).

where or denotes logical disjunction. Observe that Date_i isn’t passed to nameAlreadyExists as an
argument because it isn’t declared in NameAlreadyExists; besides, look that the clause ends in a dot.

In turn the definition of addBirthdayOk is the following:

addBirthdayOk(Known,Birthday,Name_i,Date_i,Known_,Birthday_) :-

Name_i nin Known &

un(Known,{Name_i},Known_) &

un(Birthday,{[Name_i,Date_i]},Birthday_).

where:

• The & symbol denotes logical conjunction.

• nin corresponds to the /∈ operator. That is, Name_i nin Known means Name i /∈ Known.

• un(Known,{Name_i},Known_) means Known = Known∪{Name i}.
• The last statement implements the state change.

Let’s now see the definition of nameAlreadyExists:

nameAlreadyExists(Known,Birthday,Name_i,Known_,Birthday_) :-

Name_i in Known &

Known_ = Known &

Birthday_ = Birthday.

where we can see how to say that there’s no state change.
The order in which clauses are given is irrelevant in the sense that a clause can be defined before or

after of being invoked for the first time.
The next schema to be translated is FindBirthday.

findBirthday(Known,Birthday,Name_i,Date_o,Known_,Birthday_) :-

findBirthdayOk(Known,Birthday,Name_i,Date_o,Known_,Birthday_)

or

notAFriend(Known,Birthday,Name_i,Known_,Birthday_).

where we can see that the translation starts to be repetitive. Now we show the definition of findBirthdayOk
and notAFriend:

findBirthdayOk(Known,Birthday,Name_i,Date_o,Known_,Birthday_) :-

Name_i in Known &

apply(Birthday,Name_i,Date_o) &
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Known_ = Known &

Birthday_ = Birthday.

notAFriend(Known,Birthday,Name_i,Known_,Birthday_) :-

Name_i nin Known &

Known_ = Known &

Birthday_ = Birthday.

where we can see how to use output variables. We can also see the {log} apply predicate which im-
plements function application. That is, apply(F,X,Y) is true if and only if F(X) = Y holds. Note that
apply(F,X,Y) makes sense only if F is a function and not any set. {log} enforces this because, inter-
nally, apply “types” F with the predicate pfun(F). Hence, if apply is called with a first argument that
happens not to be a function, the predicate will fail making {log} to answer no.

Finally the translation of Remind is the following:

remind(Known,Birthday,Today_i,Cards_o,Known_,Birthday_) :-

rres(Birthday,{Today_i},M) &

dom(M,Cards_o) &

Known_ = Known &

Birthday_ = Birthday.

This is an interesting example because it shows how set and relational expressions must be translated.
Given that in {log} set and relational operators are implemented as predicates, it’s impossible to write
set and relational expressions. Instead, we have to introduce new variables (such as M) to “chain” the
predicates. Predicate rres(R,A,S) stands for S = RBA while dom(R,B) stands for domR = B (that is,
dom(R,B) allows to compute the domain of R and “save” it in B).

The schema specifying the initial state is translated as a clause receiving the state variables:

birthdayBookInit(Known,Birthday) :-

Known = {} &

Birthday = {}.

where {} denotes the empty set ( /0).
The translation of BirthdayBookInv is given in Section 4.

2.2 Types in {log}

So far we haven’t given the types of the variables. {log} is essentially an untyped formalism but in the
last version we have added a type system similar to Z’s. {log}’s type system is described in detail in
chapter 9 of {log} user’s manual. Here we will give a broad description of how to use types in {log}.
{log}’s type system allows users to define type synonyms to simplify the type declaration of clauses

and variables. For example, we can define the following type synonyms:

:- dec_type(bb,stype([name,date])).

:- dec_type(kn,stype(name)).

where bb is a type identifier o synonym of the type stype([name,date]). In stype([name,date]),
name and date correspond to the basic types NAME and DATE of the Z specification. In {log}, Z
basic types (called uninterpreted types in {log}) can be introduced without any previous declaration. In
{log} basic types must begin with a lowercase letter (i.e. they are constants). Besides, [name,date]
corresponds to the Cartesian product between name and date (i.e., is equivalent to NAME×DATE in
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Z). In turn, stype([name,date]) corresponds to the type of all the sets of type [name,date] (i.e., is
equivalent to P(NAME×DATE) in Z). Hence, stype([name,date]) corresponds to the type of all the
binary relations between name and date (i.e., NAME↔ DATE in Z).

These type synonyms allow us to declare the type of the addBirthdayOk clause:

:- dec_p_type(addBirthdayOk(kn,bb,name,date,kn,bb)).

This declaration must come before the clause definition:

:- dec_p_type(addBirthdayOk(kn,bb,name,date,kn,bb)).

addBirthdayOk(Known,Birthday,Name_i,Date_i,Known_,Birthday_) :-

Name_i nin Known &

...

The dec_p_type predicate has only one argument of the following form:

clause_name(parameters)

In turn, parameters is a list whose elements corresponds one-to-one to the clause arguments. In this
way, the type of each clause argument is given. Then, the type of Known is kn, the type of Birthday is
bb, etc.

In this version of {log} clauses must be defined before they are used, due to the introduc-
tion of types. We remark this because this wasn’t the case in previous versions of {log} and
isn’t the case in Prolog programs. This means that we should first define addBirthdayOk or
nameAlreadyExists and then addBirthday because the latter invokes the former two.

Note that above we didn’t respect this rule because we decided to introduce types later for pedagogy
reasons. From now on we will proceed according to the above rule; that is, by defining the clauses before
they are used

The following is the typed version of the remid clause.

:- dec_p_type(remind(kn,bb,date,kn,kn,bb)).

remind(Known,Birthday,Today_i,Cards_o,Known_,Birthday_) :-

rres(Birthday,{Today_i},M) & dec(M,bb) &

dom(M,Cards_o) &

Known_ = Known &

Birthday_ = Birthday.

This clause is interesting because it shows how clause variables are typed by means of the dec(V,t)

predicate. Indeed, dec(V,t) is interpreted as “variable V is of tye t”.
The {log} code including type declarations of the complete translation of the birthday book can be

found in Appendix A.
Recall that partial functions aren’t a type in Z. The same happens in {log}; in fact it is impossible to

define the type of all partial functions. The natural numbers are another example of a set that isn’t a type.
This means that if in Z we have f : X 7→ Y in {log} we declare F to be of type stype([x,y]) and then
we should either establish or prove that F is a function (we’ll see further details on this later). Likewise,
if in Z we declare x : N in {log} we must declare X to be of type int and then either establish or prove
that 0 =< X holds. In general, when a Z specification is translated into {log} it would be convenient
to first normalize the Z specification and then start the translation into {log}. In this case the Z types
are translated straightforwardly and the predicates introduced due to the normalization process become
constraints at the {log} level (i.e. 0 =< X) or they are proved to be invariants. For instance, x : N is a
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non-normalized declaration because N isn’t a type (it’s a set). The normalized declaration would be x : Z
plus x≥ 0 conjoined in the predicate part. In this case, in {log} the type of x is int and we should either
establish or prove that x is always greater than or equal to zero.

In the birthday book the declaration birthday : NAME 7→ DATE isn’t normalized. The normalized
declaration would be birthday : NAME↔ DATE plus birthday ∈ NAME 7→ DATE in the predicate part.
In this case, birthday’s type is translated as we did above and we could add pfun(Birthday) to the
clauses where we use Birthday. pfun is a {log} predicate implementing the definition of (partial)
function as a subclass of the sets of ordered pairs. But then, why we haven’t state pfun(B) somewhere
in addBirthday? Because the idea is to show how {log} can be used to prove that pfun(B) is a state
invariant of the specification. In fact had we written the state schema BirthdayBook with normalized
declarations, it would have resulted as follows:

BirthdayBook
known : PNAME
birthday : NAME↔ DATE

birthday ∈ NAME 7→ DATE

where birthday ∈ NAME 7→DATE would be a state invariant by definition (recall Section 6 of “Introduc-
tion to the Z notation”). Therefore, we should have written the schema as follows:

BirthdayBook
known : PNAME
birthday : NAME↔ DATE

BirthdayBookInv
BirthdayBook

known = dombirthday
birthday ∈ NAME 7→ DATE

where it’s clear that we must prove that pfun(B) is a state invariant of the specification. We’ll come
back to this point in Section 4.

2.3 An alternative to encoding state variables

The state schema of the birthday book specification has two variables (known and birthday). These
variables are included as parameters in the clauses encoding the operations of the specification; besides,
the after state variables must also be included (those ending with ‘_’). This can become complex if the
Z specification declares many state variables. In this case one should define {log} clauses with many
parameters which would make the code hard to read.

State variables can also be encoded by bundling them in a Prolog list. Later Prolog unification is
used to access each state variable. The following {log} code uses this encoding in addBirthdayOk1:

1Here we don’t include type declarations to simplify the presentation.
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addBirthdayOk(BirthdayBook,Name_i,Date_i,BirthdayBook_) :-

BirthdayBook = [Known,Birthday] &

Name_i nin Known &

un(Known,{Name_i},Known_) &

un(Birthday,{[Name_i,Date_i]},Birthday_) &

BirthdayBook_ = [Known_,Birthday_].

where BirthdayBook represents the before state and BirthdayBook_ the after state. Both variables are
assumed to be lists of length two. This assumption is enforced by means of the equalities:
BirthdayBook = [Known,Birthday]

BirthdayBook_ = [Known_,Birthday_]

This means that if for any reason addBirthdayOk is invoked with a first parameter that doesn’t unify
with [Known,Birthday], the invocation will fail (same with the second parameter).

Observe how the unification between BirthdayBook_ with the list [Known_, Birthday_] sets the
after state. See that the list contains the same variables used in the postcondition of the operation.

It is possible to unify BirthdayBook with a list containing any two variables; they need not to be
the same used in the specification. For example, BirthdayBook = [K,B].

Note that the first and last arguments of addBirthdayOk are named as the state schema of the Z
specification (i.e. BirthdayBook). This convention helps to relate the Z specification with the {log} code,
but it is in no way mandatory.

Clearly, encoding state variables in this way carries the complexity of a large number of arguments
to the length of the list representing the state of the system. Hence, it is at the programmer discretion
what is the best encoding for each situation. In fact, both encodings can coexist. In this case care must
be taken when invoking clauses.

A slight advantage of using the encoding with Prolog lists can be seen in operations not using some
of the state variables. For instance, the Z operation named Remind doesn’t use state variable known. In
that case it can be encoded as follows:
remind(BirthdayBook,Today_i,Cards_o,BirthdayBook_) :-

BirthdayBook = [_,B] &

rres(B,{Today_i},M) &

dom(M,Cards_o) &

BirthdayBook_ = BirthdayBook.

where we have written ‘_’ in place of the first element of the list unifying with BirthdayBook. This
means that this element of the list doesn’t matter; it can be anything. If the list of state variables has many
elements and some of them are not used in a clause, the programmer can use ‘_’ in different positions
instead of writing variable names.

Another benefit of using the list-based encoding is when stating that no state change occurs. For
example, in the birthday book specification BirthdayBook_ = BirthdayBook is written instead of
Known_ = Known & Birthday_ = Birthday. This encoding is a good help when there are many
state variables.

If the list of state variables is long it might be a problem recalling what is the position of each variable.
Switching the order of two or more variables will lead to unsound programs.

2.4 Translating ordered pairs

Ordered pairs are encoded as Prolog lists of two elements. For instance, if x is a variable (x,3) is
translated as [X,3].
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The translation of p : Z×V and p.1 = x−4 is: P = [A,_] & A is X - 4 (see the is operator in
Section 2.7). This means that, basically, we use unification to force that P be a two elements list such that
its first element is variable A, which in turn must be equal to X - 4. A must be a variable name not used
in the clause. Note that we write ‘_’ as the second argument because we aren’t interested in the second
component of P.

Prolog lists must not be used to encode Z sequences.

2.5 Translating sets

2.5.1 Extensional sets — Introduction to set unification

The set {1,2,3} is simply translated as {1,2,3}. If one of the elements of the set is a variable or an
element of an enumerated type, take care of the differences concerning variables and constants in Z and
{log}. For example, if in Z x is a variable, then the set {2,x,6} is translated as {2,X,6}.

However, {log} provides a form of extensional sets that, in a sense, is more powerful than the one
offered by Z. The term {.../...} is called extensional set constructor. In {E/C} the second argument
(i.e. C) must be a set. {E/C} means {E}∪C. Then, there are solutions where E ∈ C. To avoid such
solutions (in case they’re incorrect or unwanted) the predicate E /∈ C must be explicitly added to the
formula. In order to make the language more simple, {log} accepts and prints terms such as {1,2 / X}

instead of {1 / {2 / X}}.
The extensional set constructor is useful and in general it’s more efficient than other encodings. For

example, the Z predicate:

A′ = A\{d?}

can be translated by means of the {log} predicate diff, whose semantics is equivalent to \ (see Table
1):

diff(A,{D_i},A_)

Bu it also can be translated by means of an extensional set:

A = {D_i / A_} & D_i nin A_ or D_i nin A & A_ = A

which in general is more efficient.
That is, the predicate A = {D_i / A_} unifies A with {D_i / A_} in such a way that it finds values

for the variable to make the equality true. If such values don’t exist the unification fails and {log} tries
the second disjunct.

Why we conjoined D_i nin A_? Simply because, for instance, A = {1,2}, D_i = 1 and A_ = {1,2}

is a solution of the equation but it isn’t a solution of A′ = A\{d?}. Precisely, when D_i nin A_ is con-
joined all the solutions where D_i belongs to A_ are eliminated.
{log} solves equalities of the form B = C, where B and C are terms denoting sets, by using set

unification. Se unification is at the base of the deductive power of {log}making it an important extension
of Prolog’s unification algorithm. Set unification is inherently computationally hard because finding out
whether or not two sets are equal implies, in the worst case, computing all the permutations of their
elements. On top of that, it is the fact that {log} can deal with partially specified sets, that is sets where
some of their elements or part of the set are variables. For these reasons, in general, {log} will show
efficiency problems when dealing with certain formulas but, at the same time, we aren’t aware of other
tools capable to solve some of the problems {log} can.
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2.5.2 Cartesian products

In {log} Cartesian products are written cp(A,B) where A and B can be variables, extensional sets and
Cartesian products.

2.5.3 Integer intervals

A Z integer interval such as n . .m is translated as int(n,m).

2.6 Translating function application

One interesting application of set unification is the application of a function to its argument. Given that
partial functions are frequently used in Z it’s necessary to add predicates of the form x ∈ dom f , before
attempting to apply f to x. The translation of these formulas into {log} can be done by using the predicate
apply or by using a set membership predicate which leads to set unification. For example the Z formula:

x ∈ dom f ∧ f (x) = y

can be translated in a direct fashion:

dom(F,D) & X in D & apply(F,X,Y)

or using a set membership predicate:

[X,Y] in F & pfun(F)

which is equivalent and more efficient as it doesn’t require to “compute” the domain of F. Concerning
the equivalence of both formulas, note that [X,Y] in F is transformed into F = {[X,Y] / G} (for
some G). Then, if there are no ordered pairs in F whose first component is X, the unification will fail
which is equivalent to say that x ∈ dom f is false. In the same way, if there’s an ordered pair in F whose
first component is X but whose second component is not Y, the unification will fail as well (which is
equivalent to f (x) 6= y). Variable G is automatically generated by {log} in such a way that it will be new
in the formula. This is interpreted as “there exists G such that. . . ”.

However, any of the encodings using pfun might not be correct. In effect, the fact that F is a function
might be something that should be proved to hold, usually in the form of a state invariant (recall schema
BirthdayBookInv shown above and the discussion around it). Consequently, if we use apply or pfun
we would be establishing that F is a function rather than getting it as a consequence of the encoding.
In other words, if we write pfun(F) we would be indicating to the programmer to control that the data
structure used to encode F be a function every time that function is applied to an argument. Usually, the
most reasonable implementation is for the code to guarantee that the data structure is a function without
explicitly controlling that.

Therefore, we can’t include apply(F,...) nor pfun(F) in the operations of the model if pfun(F)
is an invariant to be proved because otherwise we would be cheeting. Then, the question is, how f x = y
is translated when we only know that f is a binary relation and that x ∈ dom f ? The {log} code is the
following:

F = {[X,Y] / G} & [X,Y] nin G & comp({[X,X]},G,{})

The justification is as follows. If we know that x∈ dom f the there exist Y and G such that F = {[X,Y] /

G} & [X,Y] nin G, due to the above analysis. Besides, if we are saying that we can apply f to x is
because there is one and only one ordered pair in f whose first component is x. Note that we aren’t
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saying that f is a function, we’re just saying that f is locally a function in x (it might well be a function
in other points of its domain but we don’t know that yet). Saying that in f there is exactly one ordered
pair whose first component is x is the same than saying that there are no ordered pairs in G whose first
component is x. We say this by using the composition operator defined over binary relations, namely
comp (see Table 2), when we conjoin the predicate comp({[X,X]},G,{}). Indeed, this predicate says
that when {[X,X]} is composed with G the result is the empty set. This can happen for two reasons: G is
the empty binary relation, in which case it’s obvious that there are no ordered pairs with first component
X; or G is non-empty but no pair in it composes with [X,X], which is equivalent to say that X does not
belong to the domain of G. We could have said the same by stating that dom(G,D) & X nin D but this
is usually less efficient because it requires to compute the domain of G.

The {log} library setloglibpf.slog defines the predicate applyTo(F,X,Y) which implements
the code shown above. This library can be loaded with add_lib(’setloglibpf.slog’).

Observe that in findBirthdayOk we have used apply which, after the above analysis, is incorrect
because pfun(Birthday) is intended to be an invariant of the program. We should replace apply by
applyTo. We didn’t do it in that way because we think that it requires a rather complex explanation
when we were just introducing {log}.

2.7 Translating arithmetic expressions

Almost all Z arithmetic expressions are translated directly into {log}, with some exceptions. The rela-
tional symbols ≤, ≥ and 6= are translated as =<, >= and neq, respectively. The arithmetic operators are
the usual ones: +, -, *, div y mod.

An equality of the form x′ = x+ 1 is translated as X_ is X + 1 (that is, in arithmetic equalities
you mustn’t use = but is). Furthermore, if in Z we have A = {x,y− 4} (A, x and y variables) it has to
be encoded as: A = {X,Z} & Z is Y - 4, where Z is a variable not used in the clause. The problem
is that nor {log} nor Prolog evaluate arithmetic expression unless the programmer forces it by using
the is operator. This means that if in {log} we run {X,Y - 4} = {Y - 3 - 1,X}, the answer will
be no because {log} will try to find out whether or not Y - 4 = Y - 3 - 1 without evaluating the
expressions (that is, it will consider them, basically, as character strings where Y is an integer variable
and thus it is impossible for the equality to hold regardless of the value of Y). On the contrary, if we run
{X,A} = {B,X} & A is Y - 4 & B is Y - 3 - 1 {log} will return several solutions (with some
repetitions), meaning that the sets are equal in several ways.

The same applies to the neq predicate: for {log} Y - 4 neq Y - 3 - 1 is true. As a consequence
we must write: H is Y - 4 & U is Y - 3 - 1 & H neq U. However, this is not necessary with the
order predicates: X + 1 > X is satisfiable but X - 1 > X isn’t.

On the other hand, A⊆ N or A : PN are translated with a restricted universal quantifier (see Section
2.9.1):

foreach(X in A, 0 =< X)

In any case, usually, A⊆ N and A : PN are invariants. If this is the intention, then they should be proved
to be rather than establishing them.

2.8 Translating set operators

Set, relational, functional and sequence operators are translated as shown in Tables 1, 2 and 3.
In order to be able to work with the sequence operators shown in Table 3 load the corresponding

library file (e.g. consult(’setlogliblist.slog’)) into the {log} environment.
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OPERATOR {log} MEANING

set set(A) A is a set
equality A = B A = B
set membership x in A x ∈ A
union un(A,B,C) C = A∪B
intersection inters(A,B,C) C = A∩B
difference diff(A,B,C) C = A\B
subset subset(A,B) A⊆ B
strict subset ssubset(A,B) A⊂ B
disjointness disj(A,B) A ‖ B
cardinality size(A,n) |A|= n

NEGATIONS

equality A neq B A 6= B
set membership x nin A x /∈ A
union nun(A,B,C) C 6= A∪B
intersection ninters(A,B,C) C 6= A∩B
difference ndiff(A,B,C) C 6= A\B
subset nsubset(A,B) A 6⊆ B
disjointness ndisj(A,B) A 6‖ B

Table 1: Set operators available in {log}

OPERATOR {log} MEANING

binary relation rel(R) R is a binary relation
partial function pfun(R) R is a partial function
function application apply(f,x,y) f (x) = y
domain dom(R,A) domR = A
range ran(R,A) ranR = A
composition comp(R,S,T) T = R◦S
inverse inv(R,S) S = R−1

domain restriction dres(A,R,S) S = ACR
domain anti-restriction dares(A,R,S) S = A−CR
range restriction rres(A,R,S) S = RBA
range anti-restriction rares(A,R,S) S = R−BA
update oplus(R,S,T) T = R⊕S
relational image rimg(R,A,B) B = R[A]

NEGACIONES

All negations are written by prefixing a letter n to the corresponding operator. For example, the
negation of dom(R,A) is ndom(R,A), that of dares(A,R,S) is ndares(A,R,S), etc.

Table 2: Relational operators available in {log}
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OPERATOR {log} MEANING

sequence slist(s) s is a sequence
extensional sequence {[1,a],[2,b],...,[n,z]} 〈a,b, . . . ,z〉
head head(s,e) e = head s
tail tail(s,t) t = tail s
last last(s,e) e = last s
front front(s,t) t = front s
add (cons) add(s,e,t) t = sa 〈e〉
concatenation concat(s,t,u) u = sa t
filter filter(A,s,t) t = A � s
extraction extract(s,A,t) t = s � A

Table 3: Sequence operators available in {log}

The cardinality operator accepts as second argument only a constant or a variable. Hence, if we run
size(A,X + 1) {log} answers no; instead if we run size(A,Y) & Y is X + 1 (Y must be a variable
not used in the clause) the answer is true because the formula is satisfiable. {log} will answer no if we
execute size(A,Y) & Y = X + 1.

2.9 Translating logical operators

Only logical conjunction (&) and disjunction (or) are available in {log}. Logical negation (¬ ) doesn’t
exist because it’s replaced by the negations of the operators available in {log}. For instance, if we want
to translate ¬ x ∈ A we write in {log} X nin A. In the same way, ¬ A = b is translated as A neq b. In
general, for each set, relational and arithmetic operator there exists a {log} predicate implementing its
negation. For instance, the Z predicate A 6⊆ B is translated as nsubset(A,B); and ¬ a ≤ y as A > Y.
Tables 1 and 2 include the negation for every set theoretic operator.

As a summary, a Z schema like the following one:

WithdrawE
ΞBank
n? : NIC
a? : MONEY
msg! : MSG

¬ (n? ∈ domsa ∧ a?≤ sa(n?) ∧ a? > 0)
msg! = error

can be translated as follows (we assume that schema Bank only declares variable sa):

withdrawE(Sa,N_i,A_i,Msg_o,Sa_) :-

(dom(Sa,D) &

N_i nin D

or

apply(Sa,N_i,Y) &

A_i > Y
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or

A_i =< 0

) &

Msg_o = error &

Sa_ = Sa.

The remaining propositional connectives can be encoded by means of the well-known propositional
equivalencies in terms of ∧, ∨ and ¬ . For example, p⇒ q is first written as ¬ p ∨ q and then ¬ p and q
are translated into {log}.

2.9.1 Quantifiers

In general existential quantifiers need not to be translated because {log} semantics is based on existen-
tially quantifying all variables of any given program. For example, if in Z we have:

∃x : N | x ∈ A

it can be translated as:

0 =< X & X in A

because the semantics of the {log} program is, essentially, an existential quantifier over both variables.
Things are different when dealing with universal quantifiers. In {log} we only have so-called re-

stricted universal quantifiers (RUQ). A RUQ is a formula of the following form:

∀x ∈ A : P(x)

where P is a proposition depending on x. In {log} the simplest RUQ are encoded as follows:

foreach(X in A,P(X))

There are more complex and expressive RUQ available2.
Recall that a proper use of the Z language avoids most of the quantified formulas.

2.10 Translating axiomatic definitions

There’s no simple way of translating all axiomatic definitions into {log} because they are so general
and serve to so many purposes. For this reason we will show how to translate the most used forms of
axiomatic definitions.

One of the problems when translating axiomatic definitions is that they are global objects while in
{log} global objects don’t really exist.

The easiest and simplest way of translating axiomatic definitions is defining a {log} clause includ-
ing all the predicates of the axiomatic definition. Here we’re assuming that each axiomatic definition
declares only one variable. As always, all the restrictions on constant and variable names as well as the
considerations on translating types, must be carefully watched.

Let’s see the most common cases.

Z specification.

2Have a look at chapter 6 of {log} user’s manual and then ask for help to the instructor.
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root : USR

{log} code.

:- dec_p_type(root_da(usr)).

root_ad(X) :- X = root.

Z specification.

adm : PUSR

adm = {root,sec}

{log} code.

:- dec_p_type(adm_da(stype(usr))).

adm_ad(X) :- X = {root,sec}.

As shown in the following example, the translation of some axiomatic definitions uses {log} recur-
sive definitions.

Z specification.

sum : seqZ→ Z

sum〈〉= 0
∀s : seqZ; n : Z• sum(sa 〈n〉) = n+ sums

{log} code. Recall that lists are sets of ordered pairs.

:- dec_p_type(sum_da(stype([int,int]),int))).

sum_ad({},0).

sum_ad({[N,X]/S},Sum) :-

[N,X] nin S & Sum is X + Sum1 & sum_ad(S,Sum1).

Note that the type of sum_da is declared only once.

These clauses can be invoked from clauses implementing schemas or other axiomatic definitions. For
example, the following is part of the translation of an operation specifying how user a creates the system
account of user u:

createUsr(...,A,U,...) :- ... & root_ad(A) & ...

which means that we’re checking that user A is root. The following version checks that A is an adminis-
trator:

createUsr(...,A,U,...) :- ... & adm_ad(Adm) & A in Adm...

where Adm is a new variable. In these cases variable A unifies with the argument named X in root_ad

and adm_ad. In the first case this implies that A is equal to root. In the second case this implies that A is
equal to {root,sec}.
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3 Simulating {log} prototypes

A {log} implementation of a Z specification is easy to get but usually it won’t meet the typical perfor-
mance requirements demanded by users. Hence, we see a {log} implementation of a Z specification
more as a prototype than as a final program. On the other hand, given the similarities between a Z spec-
ification and the corresponding {log} program, it’s reasonable to think that the prototype is a correct
implementation of the specification3. Then, we can use these prototypes to make an early validation of
the requirements.

Validating user requirements by means of prototypes entails executing the prototypes together with
the users so they can agree or disagree with the behavior of the prototypes. This early validation will
detect many errors, ambiguities and incompleteness present in the requirements and possible misunder-
standings or misinterpretations generated by the software engineers. Without this validation many of
these issues would be detected in later stages of the project thus increasing the project costs. Think that
if one of these issues is detected once the product has been delivered it means to correct it from the
requirements document, the specification, the design, the implementation, the user documentation, etc.

Since we see {log} programs as prototypes we talk about simulations or animations rather than
executions when speaking about running them. However, technically, what we do is no more than running
a program. The word simulation is usually used in the context of models (e.g. modeling and simulation).
In a sense, our {log} programs are executable models of the user requirements. On the other hand,
the word animation is usually used in the context of formal specifications. In this sense, the {log}
implementation of a Z specification can be seen as an executable specification. In fact, as we will see,
{log} programs have features and properties usually enjoyed by specifications and models, which are
rare or nonexistent in programs written in imperative (and even functional) programming languages.

Be it execution, simulation or animation the basic idea is to provide inputs to the program, model or
specification and observe the produced outputs or effects. Besides, we will show that {log} offers more
possibilities beyond this basic idea.

3.1 Basic simulations

Let’s see an example of a simulation on a {log} prototype. Assume the prototype of the birthday book is
saved in a file named bb.slog. We start by executing the Prolog interpreter from a command terminal
and from the folder where {log} was installed4.

~/setlog$ prolog

?- consult(’setlog.slog’).

?- setlog.

{log}=> consult(’bb.slog’).

{log}=> birthdayBookInit(K,B) & addBirthday(K,B,maxi,160367,K_,B_).

K = {},

B = {},

3In fact, the translation process can be automated in many cases.
4The name of the Prolog executable may vary depending on the interpreter and the operating system. The example corre-

sponds to a Ubuntu Linux machine and SWI-Prolog.
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K_ = {maxi},

B_ = {[maxi,160367]}

Another solution? (y/n) y

no

{log}=>

where in each line we’re doing the following:

1. The Prolog interpreter is executed.

2. The {log} interpreter is loaded.

3. The {log} interpreter is accessed.

4. The birthday book prototype is loaded.

5. The simulation is run:

birthdayBookInit(K,B) & addBirthday(K,B,maxi,160367,K_,B_).

consisting of:

• birthdayBookInit is called passing to it any two variables as arguments;
• addBirthday is called passing to it in the first and second arguments the same variables

used to call birthdayBookInit; as the third and fourth arguments two constants; and two
new variables in the last two parameters.

Observe that the simulation ends in a dot.

6. {log} shows the result of the simulation.

7. {log} asks if we want to see other solutions and we answer yes.

8. {log} says there are no more solutions.

Let’s see the simulation in detail:

birthdayBookInit(K,B) & addBirthday(K,B,maxi,160367,K_,B_).

When we call birthdayBookInit(K,B), K and B unify with Known and Birthday which are the
formal parameters used in the definition of birthdayBookInit (see the complete code in Appendix
A). This implies that K is equal to Known and B is equal to Birthday which in turn implies that K
and B are equal to {}. This is exactly the first line of the answer returned by {log}. Hence, when
addBirthday(K,B,maxi,160367,K_,B_) is called, it’s like we were calling:

addBirthday({},{},maxi,160367,K_,B_)

Calling addBirthday implies the non-deterministic invocation of addBirthdayOk and nameAlreadyExists.
That is, both clauses are invoked in an unspecified order. Let’s assume that addBirthdayOk is invoked
first. In this case, unification goes as follows:

Known = {}

Birthday = {}

Name_i = maxi

Date_i = 160367

K_ = Known_

B_ = Birthday_
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Hence addBirthdayOk is instantiated as follows:
maxi nin {} &

un({},{maxi},K_) &

un({},{[maxi,160367]},B_)

which reduces to:
K_ = {maxi} &

B_ = {[maxi,160367]}

which corresponds to the second line of the answer returned by {log}.
When ’y’ is pressed {log} invokes nameAlreadyExists because it was the clause pending of invo-

cation. Again, unification takes place and a new series of equations are produced:
Known = {}

Birthday = {}

Name_i = maxi

K_ = Known

B_ = Birthday

which implies that K unifies with {}. Then, nameAlreadyExists is instantiated as follows:
maxi in {}

As this predicate is obviously false, the invocation to nameAlreadyExists fails and hence {log} pro-
duces no solution. As a consequence {log} answers no after we press ’y’.

The following simulation is longer and includes the previous one.
birthdayBookInit(K,B) & addBirthday(K,B,maxi,160367,K1,B1) &

addBirthday(K1,B1,’Yo’,201166,K2,B2) & findBirthday(K2,B2,’Yo’,C,K3,B3) &

addBirthday(K3,B3,’Otro’,201166,K4,B4) & remind(K4,B4,160367,Card,K5,B5) &

remind(K5,B5,201166,Card1,K_,B_).

Here we can see that we’re calling all the operations defined in the prototype; that we use different
variables to chain the state transitions; and that it’s possible to use constants beginning with an uppercase
letter as long as we enclose them between single quotation marks.

The first solution returned by that simulation is the following:
K = {},

B = {},

K1 = {maxi},

B1 = {[maxi,160367]},

K2 = {maxi,Yo},

B2 = {[maxi,160367],[Yo,201166]},

C = 201166,

K3 = {maxi,Yo},

B3 = {[maxi,160367],[Yo,201166]},

K4 = {maxi,Yo,Otro},

B4 = {[maxi,160367],[Yo,201166],[Otro,201166]},

Card = {maxi},

K5 = {maxi,Yo,Otro},

B5 = {[maxi,160367],[Yo,201166],[Otro,201166]},

Card1 = {Yo,Otro},

K_ = {maxi,Yo,Otro},

B_ = {[maxi,160367],[Yo,201166],[Otro,201166]}
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where we can see that {log} gives us the chance to have a complete trace of the prototype execution.
Note also that {log} eliminates the single quotation marks we used to enclose some constants.

It’s important to remark that the variables used to chain the state transitions (i.e. K1, B1, . . . , K5, B5)
must be all different. If done otherwise, the simulation might be incorrect. For instance:

birthdayBookInit(K,B) & addBirthday(K,B,N,C,K,B).

will fail as the values of K and B before invoking addBirthday can’t unify with the values returned by
it. In other words, the K and B as the first two arguments of addBirthday can’t have the same value than
the K and B used as the last two arguments. We could use the same variable for the before and after state
of query state operations (for instance when we invoke findBirthday and remid).

So far the two simulations we have performed start in the initial state. It’s quite simple to start a
simulation from any state:

K = {maxi,caro,cami,alvaro} &

B = {[maxi,160367],[caro,201166],[cami,290697],[alvaro,110400]} &

addBirthday(K,B,’Yo’,160367,K1,B1) & remind(K1,B1,160367,Card,K1,B1).

where we can see that we use the same variable to indicate the before and after state of remid (because
we know this clause produces no state change). In this case the answer is:

K = {maxi,caro,cami,alvaro},

B = {[maxi,160367],[caro,201166],[cami,290697],[alvaro,110400]},

K1 = {maxi,caro,cami,alvaro,Yo},

B1 = {[maxi,160367],[caro,201166],[cami,290697],[alvaro,110400],[Yo,160367]},

Card = {maxi,Yo}

A potential problem of manually defining the initial state for a simulation is that this state, due to
human error, might not verify the state invariant. Nevertheless, it’s very easy to avoid this problem as we
will see in Section 3.6.

3.2 Type checking and simulations

So far we haven’t really used {log}’s typechecker. Actually when we consulted bb.slog the types
weren’t checked. In other words {log} ignored the dec_p_type assertions included in bb.slog. This
means that possible type errors weren’t detected by {log}. In this sense {log} executed all the simulations
in untyped mode. In this section we’ll see how to call the typechecker and how this affects simulations.
Recall reading chapter 9 of {log} user’s manual for further details.

Type checking can be activated by means of the type_check command which should be issued
before the file is consulted.

~/setlog$ prolog

?- consult(’setlog.slog’).

?- setlog.

{log}=> type_check. % typechecker is active

{log}=> consult(’bb.slog’).
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In this way, when {log} executes command consult it invokes the typechecker and if there are type
errors we’ll see an error message.

Type checking can be deactivated at any time by means of command notype_check.
When the typechecker is active all formulas (or programs or simulations) must be correctly typed

because otherwise {log} will just print a type error.

{log}=> birthdayBookInit(K,B) & addBirthday(K,B,maxi,160367,K_,B_).

***ERROR***: type error: variable K has no type declaration

Then, we have to declare the type of all variables:

{log}=> birthdayBookInit(K,B) & addBirthday(K,B,name?maxi,date?d160367,K_,B_) &

dec([K,K_],kn) & dec([B,B_],bb).

K = {},

B = {},

K_ = {name?maxi},

B_ = {[name?maxi,date?d160367]}

Observe that in this case we have written date?d160367 instead of date?160367 (without ‘d’) because
in {log} constants of basic type t are of the form t?atom where atom must be a Prolog atom (numbers
aren’t atoms).

If the user wants to typecheck the program, for instance bb.slog, but (s)he doesn’t want to deal with
types when running simulations, the typechecker can be deactivated right after consulting the program. In
this way {log} will check the types of the program but it then will accept untyped formulas (or programs
or simulations).

Clearly, in general, working with untyped simulations is easier but more dangerous because we could
call the program with ill-typed inputs thus causing false failures.

In the rest of this section we’ll work with untyped simulations. This means that the user must ensure
that typechecking is deactivated (command notype_check).

3.3 Simulaciones using integer numbers

As we have said, {log} is, essentially, a set solver. However, it’s also capable of solving formulas
containing predicates over the integer numbers. In that regard, {log} uses two external solvers known as
CLP(FD)5 and CLP(Q)6. Each of them has its advantages and disadvantages.

By default {log} uses CLP(Q). Users can change to CLP(FD) by means of command int_solv-
er(clpfd) and can come back to CLP(Q) by means of int_solver(clpq).

Generally speaking, it’s more convenient to run simulations when CLP(FD) is active because it tends
to generate more concrete solutions. In particular CLP(FD) is capable of performing labeling over the
integer numbers which allows users to go through the solutions interactively. Labeling works if at least
some of the integer variables are bound to a finite domain. Variable N is bound to the finite domain
int(a,b) (a and b integer numbers) if predicate N in int(a,b) is in the formula. See chapter 7 of
{log} user’s manual for more details.

For example, if CLP(Q) is active, the answer to the following goal:

5https://www.swi-prolog.org/pldoc/man?section=clpfd-predicate-index
6https://www.swi-prolog.org/pldoc/man?section=clpqr

https://www.swi-prolog.org/pldoc/man?section=clpfd-predicate-index
https://www.swi-prolog.org/pldoc/man?section=clpqr
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Turn is 2*N + 1.

is exactly the same formula. That is, {log} is telling us that the formula is satisfiable but we don’t have
one of its solutions. If we activate CLP(FD):

int_solver(clpfd).

Turn is 2*N + 1.

{log} prints a warning message and the same formula:

***WARNING***: non-finite domain

true

Constraint: Turn is 2*N+1

This means that the formula might be satisfiable but CLP(FD) isn’t sure. If we want a more reliable
answer we have to bound Turn or N to a finite domain:

N in int(1,5) & Turn is 2*N + 1.

in which case the first solution is:

N = 1, Turn = 3

and we can get more solutions interactively. On the contrary, if we activate CLP(Q) the finite domain
doesn’t quite help to get a concrete solution:

int_solver(clpq).

N in int(1,5) & Turn is 2*N + 1.

true

Constraint: N>=1, N=<5, Turn is 2*N+1

On the other hand, CLP(Q) is complete for linear integer arithmetic while CLP(FD) isn’t. This means
that if we want to use {log} to automatically prove a property of the program for all the integer numbers,
we must use CLP(Q)7. Given that simulations don’t prove properties it’s reasonable to use CLP(FD).

3.4 Symbolic simulations

The symbolic execution of a program means to execute it providing to it variables as inputs instead of
constants. This means that the executing engine should be able to symbolically operate with variables
in order to compute program states as the execution moves forward. As a symbolic execution operates
with variables, it can show more general properties of the program than when this is run with constants
as input.
{log} is able to symbolically simulate prototypes, within certain limits. These limits are given by set

theory and non-recursive clauses. The following are the conditions under which {log} can run symbolic
simulations8:

7As in general non-linear arithmetic is undecidable it’s quite difficult to build a tool capable of automatically proving
program properties involving non-linear arithmetic.

8This is an informal description and not entirely accurate of the conditions for {log} being able to perform symbolic
simulations. These conditions are more or less complex and quite technical.



24

1. Recursive clauses are not allowed (for instance sum_da shown in Section 2.10).

2. Only the operators of Tables 1 and 2 are allowed. If the {log} program uses the cardinality operator
(size), the program can’t use the operators of Table 2. The size operator is complete only when
combined with the operators of Table 1.

3. All the arithmetic formulas are linear9.

This means the {log} code can’t use operators of Table 3 if symbolic simulations are to be done10.
Actually, many symbolic simulations are still possible even if the above conditions aren’t met.

The {log} prototype of the birthday book falls within the limits of what {log} can symbolically
simulate. For example, starting from the initial state we can call addBirthday using just variables:

birthdayBookInit(K,B) & addBirthday(K,B,N,C,K_,B_).

in which case {log} answers:

K = {},

B = {},

K_ = {N},

B_ = {[N,C]}

which is a representation of the expected results. Now we can chain a second invocation to addBirthday
using other input variables:

birthdayBookInit(K,B) & addBirthday(K,B,N,C,K1,B1) & addBirthday(K1,B1,M,D,K_,B_).

in which case the first solution returned by {log} is:

K = {},

B = {},

K1 = {N},

B1 = {[N,C]},

K_ = {N,M},

B_ = {[N,C],[M,D]}

Constraint: N neq M

where we can see a section of the answer which has never appeared before. Indeed, the most general
solution that can be returned by {log} consists of two parts: a (possibly empty) list of equalities between
variables and terms (or expressions); and a (possibly empty) list of constraints. Each constraint is a
{log} predicate; the returned constraints appear after the word Constraint. The conjunction of all
these constraints is always satisfiable (in general the solution is obtained by substituting the variables of
type set by the empty set). In this example, clearly, the second invocation to addBirthday can add the
pair [M,D] to the birthday bool if and only if M nin {N} (i.e. M /∈ {N}), which holds if and only if M is
different from N.
{log} returns a second solution to this symbolic execution:

K = {},

B = {},

K1 = {N},

9More precisely, all the integer expressions must be sums or subtractions of terms of the form x*y with x or y constants.
All arithmetic relational operators are allowed, even neq.

10The problem with the operators of Table 3 is that they depend on certain aspects of set theory that aren’t implemented in
{log}, yet.
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B1 = {[N,C]},

M = N,

K_ = {N},

B_ = {[N,C]}

produced after considering that N and M are equal in which case the second invocation to addBirthday

goes through the branch of nameAlreadyExists and so K_ and B_ are equal to K1 and B1, which is the
expected result as well.

Clearly, symbolic executions allows us to draw more general conclusions about the behavior of the
prototype. The next example illustrates what we just said:
birthdayBookInit(K,B) & addBirthday(K,B,N,C,K1,B1) &

addBirthday(K1,B1,M,D,K2,B2) & findBirthday(K2,B2,W,X,K2,B2).

given that {log} will consider several particular cases regarding whether M, N and W are equal or not. For
example, the following are the first three solutions returned by {log}:
K = {},

B = {},

K1 = {N},

B1 = {[N,C]},

K2 = {N,M},

B2 = {[N,C],[M,D]},

W = N,

X = C

Constraint: N neq M

Another solution? (y/n)

K = {},

B = {},

K1 = {N},

B1 = {[N,C]},

K2 = {N,M},

B2 = {[N,C],[M,D]},

W = M,

X = D

Constraint: N neq M

Another solution? (y/n)

K = {},

B = {},

K1 = {N},

B1 = {[N,C]},

K2 = {N,M},

B2 = {[N,C],[M,D]}

Constraint: N neq M, N neq W, M neq W

In the first case W = N is considered and so X must be equal to C; the second case is similar to the first
one; and in the third W isn’t M nor N and so X can take any value (is this an error?). {log} returns more
solutions some of which are repeated.
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Obviously symbolic simulations may combine variables with constants. In general the less the vari-
ables we use the less the number of solutions.

3.5 Inverse simulations

Normally, in a simulation the user provides inputs and the model returns the outputs. There are situations
in which is interesting to get the inputs from the outputs. This means a sort of an inverse simulation.
{log} is able to perform inverse simulations within the same limits in which is able to perform

symbolic simulations. In fact, a careful reading of the previous section reveals that {log} doesn’t really
distinguish input from output variables, nor between before and after states. As a consequence, for {log}
is more or less the same to simulate a prototype by providing values for the input variables or for the
output variables; in fact, {log} is able to simulate a prototype just with variables.

Let’s see a very simple inverse simulation where we only give the after state:

K_ = {maxi,caro,cami,alvaro} &

B_ = {[maxi,160367],[caro,201166],[cami,290697],[alvaro,110400]} &

addBirthday(K,B,N,C,K_,B_).

The first solution returned by {log} is the following:

K_ = {maxi,caro,cami,alvaro},

B_ = {[maxi,160367],[caro,201166],[cami,290697],[alvaro,110400]},

K = {maxi,caro,cami},

B = {[maxi,160367],[caro,201166],[cami,290697]},

N = alvaro,

C = 110400

When the Z specification is deterministic, the corresponding {log} prototype will be deterministic as
well. Therefore, for any given input there will be only one solution. However, the inverse simulation of a
deterministic prototype may generate a number of solutions. This is the case with the above simulation.
The first solution computed by {log} considered the case where N = alvaro and C = 110400, but
this isn’t the only possibility. Then, when we ask {log} for another solution we get, for instance, the
following:

K_ = {maxi,caro,cami,alvaro},

B_ = {[maxi,160367],[caro,201166],[cami,290697],[alvaro,110400]},

K = {maxi,caro,alvaro},

B = {[maxi,160367],[caro,201166],[alvaro,110400]},

N = cami,

C = 290697

which means that K_ and B_ may have been generated by starting from some K and B where cami’s
birthday isn’t in the book and so we can add it.

3.6 Evaluation of predicates

At the end of Section 3.1 we showed how to start a simulation from a state different from the initial state.
We also said that this entails some risks as manually writing the start state is error prone which may lead
to an unsound state. In this section we will see how to avoid this problem by using a feature of {log} that
is useful for other verification activities, too.

Let’s consider the following state of the birthday book:
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Known = {maxi,caro,cami,alvaro}

Birthday = {[maxi,160367],[caro,201166],[cami,290697],[alvaro,110400]}

Starting a simulation from this state may give incorrect results if it doesn’t verify the state invariant
defined for the specification. Recall that the state invariant for the birthday book is:

BirthdayBookInv
BirthdayBook

known = dombirthday

With {log} is very simple to check that S0 verifies the state invariant. We first translate BirthdayBookInv
into {log}:
birthdayBookInv(Known,Birthday) :-

dom(Birthday,Known).

Afterwards, we invoke the new clause passing in to it the state defined above:

Known = {maxi,caro,cami,alvaro} &

Birthday = {[maxi,160367],[caro,201166],[cami,290697],[alvaro,110400]} &

birthdayBookInv(Known,Birthday).

in which case {log} returns the values of Known and Birthday, meaning that birthdayBookInv is
satisfied. If this weren’t the case the answer would have been no. If we call birthdayBookInv passing
in to it the values of the variables:

birthdayBookInv({maxi,caro,cami,alvaro},

{[maxi,160367],[caro,201166],[cami,290697],[alvaro,110400]}).

the answer is yes.
Now, let’s say we have written a state not satisfying the state invariant, for instance (note that maxi

is missing from known):

Known = {caro,cami,alvaro} &

Birthday = {[maxi,160367],[caro,201166],[cami,290697],[alvaro,110400]} &

birthdayBookInv(Known,Birthday).

Then, the answer of {log} is no.
In general we can take any property and evaluate it on some values. For example, Birthday must

be a partial function in any given state. Hence, for instance, if we execute:

pfun({[maxi,160367],[caro,201166],[cami,290697],[alvaro,110400]}).

{log} answers yes and if we execute:

pfun({[maxi,160367],[maxi,201166],[cami,290697],[alvaro,110400]}).

it answers no.

4 Automated proofs with {log}

Evaluating properties with {log} helps to run correct simulations by checking that the starting state is
correctly defined. It also helps to test whether or not certain properties are true of the specification or
not. However, it would be better if we could prove that these properties are true of the specification. In
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this section we will see how {log} allows us to prove that the operations of a specification preserve the
state invariant.

So far we have used {log} as a (prototype) programming language. However, {log} is also a sat-
isfiability solver. This means that {log} is a program that can decide if formulas of some theory are
satisfiable or not. In this case the theory is the theory of finite sets and binary relations combined with
the operators listed in Tables 1 and 2 combined with the linear integer arithmetic11.

If F is a formula depending on a variable, we say that F is satisfiable if and only if:

∃y : F(y)

In the case of {log}, y is quantified over all finite sets. Therefore, if {log} answers that F is satisfiable
it means that there exists a finite set satisfying it. Symmetrically, if {log} says that F isn’t satisfiable it
means that there is no finite set satisfying it. Formally, F is an unsatisfiable formula if:

∀y : ¬ F(y) (1)

If we call G(x) =̂ ¬ F(x) then (1) becomes:

∀y : G(y) (2)

which means that G is true of every finite set. Putting it in another way, G is valid with respect to the
theory of finite sets; or, equivalently, G is a theorem of the theory of finite sets.

In summary, if {log} decides that F is unsatisfiable, then we know that ¬ F is a theorem.

In other words, (1) and (2) are two sides of the same coin: (1) says that F is unsatisfiable and (2) says
that G (i.e. ¬ F) is a theorem.

Recall to activate CLP(Q) when performing proofs.

Recall that in order to prove that an operation, T , of a Z specification preserves the state invariant I
we have to discharge the following proof obligation:

I ∧ T⇒ I′ (3)

If we want to use {log} to discharge (3) we have to ask {log} to check if the negation of (3) is unsatisfi-
able. In fact, we need to execute the following {log} program:

I ∧ T ∧ ¬ I′ (4)

because ¬ (I ∧ T⇒ I′)≡ ¬ (¬ (I ∧ T) ∨ I′)≡ I ∧ T ∧ ¬ I′.
The problem in using {log} to decide the satisfiability of (4), is the predicate ¬ I′. More precisely,

we shouldn’t use logical negation because if we do, in general, {log} won’t be able to prove that the
formula is unsatisfiable. In any case, logical negation can be avoided in {log} as long as we work with
the operators of Tables 1 and 2 and linear integer algebra. Recall that for each operator of Tables 1
and 2 {log} implements its negation. For example, instead of ¬ x ∈ A we should write x /∈ A; instead
of ¬ A = B, we should write A 6= B; instead of ¬ pfun(f ) we should write npfun(f ); instead of ¬ X > Y

11In what follows we will only mention the theory of finite sets but the same is valid for this theory combined with linear
integer algebra.
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we should write X ≤ Y; and so forth and so on. Then, coming back to formula (4), if I′ is a compound
predicate (i.e. a predicate formed by conjunction, disjunction, implication, etc.), then we must distribute
the negation all the way down to the atoms at which point we use the negations of the operators of Tables
1 and 2.

In the Z specification of the birthday book we proposed as invariant the following formula:

dombirthday = known

Hence, if we want to prove that AddBirthday preserves this invariant, we have to prove the following:

dombirthday = known ∧ AddBirthday⇒ dombirthday′ = known′ (5)

However, it we’re going to use {log} to prove (5) we need to see if the translation into {log} of the
following formula is unsatisfiable (due to (4)):

dombirthday = known ∧ AddBirthday ∧ dombirthday′ 6= known′

The translation into {log} of that formula is:

dom(B,K) &

addBirthday(K,B,N,C,K_,B_) &

ndom(B_,K_).

When {log} is called to solve this formula (or to run this program) the answer is no because {log} finds
it unsatisfiable. If this formula is unsatisfiable, then its negation is a theorem. And the negation of this
{log} formula is (5). Hence, if {log} answers no we know that AddBirthday preserves the state invariant.

So we have automatically proved that AddBirthday preserves this invariant for every finite set. From
this, we can’t conclude that AddBirthday preserves this invariant for every set but, will the implemen-
tation of the birthday book ever process an infinite set of persons? The reader can try to prove that the
other operations of the birthday book preserve this invariant.

When the Z specification of the birthday book was translated into {log}, we mentioned that when
translating birthday its type at the {log} level is stype([name,date])—which is interpreted as the
Z type NAME ↔ DATE. Besides we said we didn’t encode birthday as a function because in {log}
functions aren’t a type (as they are in, for instance, functional programming languages). Finally, we said
that we will use {log} to prove that birthday is a function in every state, i.e. it’s a state invariant. In other
words, with {log}’s type system we can express that birthday is a binary relation between NAME and
DATE; and then we can use {log} to prove that actually birthday is a function. For more details reread
Section 2.1.2; in particular we suggest to take a look at shcema BirthdayBookInv.

Then, we will prove that:

birthday ∈ 7→ ∧ AddBirthday⇒ birthday′ ∈ 7→ (6)

where 7→ denotes the set of all partial functions (with any domain and range). Again, as we will use
{log} to prove that, we need to negate the formula:

birthday ∈ 7→ ∧ AddBirthday ∧ birthday′ /∈ 7→

where we interpret birthday′ /∈ 7→ as birthday′ isn’t a partial function. Now, the corresponding {log}
formula is:
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pfun(B) &

addBirthday(K,B,N,C,K_,B_) &

npfun(B_).

where we translate birthday′ /∈ 7→ as npfun(B_) because this predicate states that its argument isn’t
a partial function (see Table 2). When {log} is asked to solve the above formula (or to run the above
program) the answer is the following:

B = {[N,_N2]/_N1},

K_ = {N/K},

B_ = {[N,_N2],[N,C]/_N1}

Constraint: pfun(_N1), comppf({[N,N]},_N1,{}), N nin K, set(_N1), [N,C] nin _N1,

C neq _N2, [N,_N2]nin _N1, set(K)

What? Weren’t we expecting no for an answer? The whole idea is that AddBirthday does preserve
the fact that birthday is a function, isn’t it? Then, what does it mean that {log} returned a solution?
Clearly, it means that (6) isn’t a theorem. Why (6) isn’t a theorem (we were pretty sure of that)?
The answer returned by {log} helps us to understand the problem. Take a look at it and observe that
B = {[N,_N2]/_N1} but it doesn’t say that N belongs to K when, as we proved in (5), K is equal to the
domain of B (and N clearly belongs to the domain of B). The problem is that AddBirthday states that
n? /∈ known instead of n? /∈ dombirthday. As we know that known = dombirthday then n? /∈ known
and n? /∈ dombirthday are equivalent. But known = dombirthday is not part of (6), and so {log} can’t
use this equality in the proof. Given that we have already proved that known = dombirthday is a state
invariant we can assume it holds in (6). Then, we now call {log} to solve the following formula:

dom(B,K) & %%% hypothesis

pfun(B) &

addBirthday(K,B,N,C,K_,B_) &

npfun(B_).

and now {log} answers no.
Recall that we don’t need to prove that the domain of birthday is a subset of NAME and that its range

is a subset of DATE because this is guaranteed by the typechecker.
In addition of proving that each operation of the specification preserves the state invariant we must

prove that the initial state satisfies it (because otherwise the system would start from an unsound state
and thus the whole system would be at danger). In general, this proof is simpler. We start by proving
that in the initial state dombirthday = known is satisfied:

birthdayBookInit(K,B) &

ndom(B,K).

We follow by proving that in the initial state birthday is a partial function:

birthdayBookInit(K,B) &

npfun(B).

And we finish by proving that the initial domain of birthday is a subset of NAME:

birthdayBookInit(K,B) &

dom(B,DB) & ran(B,RB) &

(nsubset(DB,NAME) or nsubset(RB,DATE)).
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4.1 Typechecking and proofs

As with simulations, proofs can be done with or without the typechecker activated. All we did above
assumes the typechecker isn’t active (command notype_check). Activating the typechecker makes
proofs somewhat more cumbersome (as users need to give the type of all variables) but they are safer
(because the typechecker can catch errors that {log}’s deductive system can’t).

Given that from a verification perspective proofs are more critical than simulations, it is recom-
mended to activate the typechecker before discharging the invariance lemmas.

We will show, then, how to run proofs when the typechecker is active (command type_check). If
we run the proof without declaring the types of variables:

dom(B,K) &

addBirthday(K,B,N,C,K_,B_) &

ndom(B_,K_).

we get a type error:

***ERROR***: type error: variable B has no type declaration

Hence, we have to give the type for each variable by means of predicate dec:

dec([B,B_],bb) & dec([K,K_],kn) & dec(N,name) & dec(C,date) &

dom(B,K) &

addBirthday(K,B,N,C,K_,B_) &

ndom(B_,K_).

in which case we get a no answer. Clearly, if types are wrong:

dec([B,B_],bb) & dec([K,K_],kn) & dec(N,date) & dec(C,name) &

dom(B,K) &

addBirthday(K,B,N,C,K_,B_) &

ndom(B_,K_).

we get a type error:

***ERROR***: type error:

in addBirthday(K,B,N,C,K_,B_) arguments have the wrong type:

N is date but should be name

C is name but should be date

References
[1] J. M. Spivey (1992): The Z notation: a reference manual. Prentice Hall International (UK) Ltd., Hertfordshire,

UK, UK.

A The {log} implementation of the birthday book

:- dec_type(bb,stype([name,date])).

:- dec_type(kn,stype(name)).

:- dec_p_type(birthdayBookInit(kn,bb)).

birthdayBookInit(Known,Birthday) :-
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Known = {} &

Birthday = {}.

:- dec_p_type(birthdayBookInv(kn,bb)).

birthdayBookInv(Known,Birthday) :-

dom(Birthday,Known).

:- dec_p_type(addBirthdayOk(kn,bb,name,date,kn,bb)).

addBirthdayOk(Known,Birthday,Name_i,Date_i,Known_,Birthday_) :-

Name_i nin Known &

un(Known,{Name_i},Known_) &

un(Birthday,{[Name_i,Date_i]},Birthday_).

:- dec_p_type(nameAlreadyExists(kn,bb,name,kn,bb)).

nameAlreadyExists(Known,Birthday,Name_i,Known_,Birthday_) :-

Name_i in Known &

Known_ = Known &

Birthday_ = Birthday.

:- dec_p_type(addBirthday(kn,bb,name,date,kn,bb)).

addBirthday(Known,Birthday,Name_i,Date_i,Known_,Birthday_) :-

addBirthdayOk(Known,Birthday,Name_i,Date_i,Known_,Birthday_)

or

nameAlreadyExists(Known,Birthday,Name_i,Known_,Birthday_).

:- dec_p_type(findBirthdayOk(kn,bb,name,date,kn,bb)).

findBirthdayOk(Known,Birthday,Name_i,Date_o,Known_,Birthday_) :-

Name_i in Known &

apply(Birthday,Name_i,Date_o) &

Known_ = Known &

Birthday_ = Birthday.

:- dec_p_type(notAFriend(kn,bb,name,kn,bb)).

notAFriend(Known,Birthday,Name_i,Known_,Birthday_) :-

Name_i nin Known &

Known_ = Known &

Birthday_ = Birthday.

:- dec_p_type(findBirthday(kn,bb,name,date,kn,bb)).

findBirthday(Known,Birthday,Name_i,Date_o,Known_,Birthday_) :-

findBirthdayOk(Known,Birthday,Name_i,Date_o,Known_,Birthday_)

or

notAFriend(Known,Birthday,Name_i,Known_,Birthday_).

:- dec_p_type(remind(kn,bb,date,kn,kn,bb)).

remind(Known,Birthday,Today_i,Cards_o,Known_,Birthday_) :-
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rres(Birthday,{Today_i},M) & dec(M,bb) &

dom(M,Cards_o) &

Known_ = Known &

Birthday_ = Birthday.
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