
Empirical evalutation of JSetL Ris
implementation

Andrea Fois, Gianfranco Rossi, Maximiliano Cristiá

Università di Parma, Parma, Italy
andrea.fois@studenti.unipr.it

Example / Cardinality 0 1 5 10 25 50 100

8 Ris creation 0.65 1.04 0.65 0.67 0.70 0.71 0.82
9 Ris expansion 0.32 0.61 1.03 1.51 3.38 5.61 10.99
11 Ris constraints 0.67 0.82 0.72 0.73 1.02 0.95 1.19
12 Ris constraint solving 0.77 0.95 1.76 2.86 5.30 8.79 17.26
13 Minimum of a set 0.26 0.40 0.53 1.22 1.49 4.54 7.35
15 Prime test 0.00 0.01 0.24 0.89 6.73 28.39 104.39
20 Squares of evens 0.22 0.78 1.26 1,79 3.77 6.83 12.32
21 Domain restriction 0.11 0.20 0.58 1.52 11.74 75.70 525
23 Reachable nodes - 0.33 1.00 4.82 88.06 815 11136

Example / Cardinality 0 1 5 10 11 12 13

14 Map coloring 0.05 0.47 5.48 713.55 2036 5940 17680
22 Factorial 0.52 1.28 6.46 18.53 22.94 25.21 -

Example / Cardinality 0 1 2 3 4 5 6

7 Permutations 0.11 0.09 0.22 1.77 28.29 625 17153

Table 1. Summary of the empirical evaluation (times are in msec)

Table 1 shows for each major example program the time it takes for the
program to complete with the given number of elements in input. The tests
have been conducted on a laptop with Windows 10, 8Gb of Ram, an SSD and
an i7-7700hq clocked at 2.69GHz. The laptop was connected to the electrical
charge during the execution of the examples. The locked CPU frequency was
achieved by setting the minimum and maximum frequency at 99% of the base
frequency. This setting disables both underclocking for power saving and the
boost of the processor frequency above its base frequency for a limited amount
of time depending on temperature, power consumption, number of logical cores
used. We used default optimisation options for the JSetL Solver. A zip archive
with every program used to test the times in the table, along with the excel
file with all the data, means and standard deviations is available at the JSetL
website (http://www.clpset.unipr.it/jsetl/). All tests were repeated 22 times and
then the first two executions were discarded because they showed an increased
computational time which dominated the time for the lower cardinalities. This
effect is due to the optimisation systems of the JVM like HotSpot which uses
a JIT compiler to recompile the most frequently used Bytecode into optimised



code.
Although we would have preferred to test every example with the same cardinal-
ities it was unfeasible: for 23 - Reachable nodes the definition of the problem
given is not reasonable for sets of 0 size (graphs with 0 nodes). For examples
7 - Permutations and 14 - Map coloring it was unfeasible to use a car-
dinality of 25 for the input size. Example 22 - Factorial did not manage to
complete for cardinalities of 13 and above because of limited arithmetic rather
than time. Moreover, for some examples a pseudorandom number generator was
used to create the input. It is important to note that for 14 - Map coloring
the input was a (pseudo-)randomly generated bipartite graph and the solver was
asked to provide a 2-coloring of it but there is no optimisation in the JSetL code
that accounts specifically for bipartite graphs and, in fact, the data shows an
exponential growth of computational time.


