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What’s new
release 16j

• Introduction of concurrency when {log} is used as a theorem prover (Sect. 11).
• Definition of a few new rewrite rules (Sect. 11).
• New execution options that enable or disable the new rewrite rules (Sect. 11).
• When the above items are combined, {log} can considerably increase its efficiency

when used as a theorem prover.
• New user commands (timeout/1, t solve/1, t solve/3, p t solve/1,
prover all strategies/1) to exploit the above new features (Sect. 11).

• Definition of the tryp execution configuration that can be passed as the fifth argu-
ment to setlog/5, thus enabling concurrency also when {log} is used from Prolog
(Sect. 15.1).

• New section on execution of state machines (Sect. 13.3).
• Sections 3.6 and 3.7 have been rewritten.
• New Sect. 11 on using {log} as an automated theorem prover.
• Bug fixed in groundsol (Sect. 3.2).
• Bug fixed in ! (cut, Sec. 14.1).

release 15h
• New user commands vcace and vcgce (Sect. 13.5.1).
• Concerning the specification of state machines (Sect. 13), now user-defined theo-

rems are divided into theorem statement and proof, whereas the latter must have
a specific form (Sect. 13.2).

• Bug fixed in the VCG concerning well-formedness of operation’s heads.
release 15g

• When working with types, it is not necessary to declare the type of the quantified
variables appearing in RQ (Sect. 12.3).

• Bug fixed concerning how RQ are typechecked.
release 15f

• When the VCG is used to generate verification conditions, users can discharge them
by calling commands accepting proving options and a timeout (Sect. 13.4).

• Bug fixed in the processing of intesional sets.
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1 Introduction

{log} (read ‘set-log’) is a Constraint Logic Programming language that embodies the fundamen-
tal forms of set designation and a number of primitive operations for set management [1, 4, 5, 7].

Sets are designated primarily by the explicit enumeration of all its elements (extensional sets),
using set terms. Sets can contain not only atoms as their elements, but also other sets (nested
sets), with no restriction over the level of set nesting.

The language provides a number of basic primitive operations for set management, such
as = (equality), in (set membership), un (union), inters (intersection), etc. {log} can also deal
with binary relations and partial functions through most of the standard relational operators,
such as dom (domain) and comp (relational composition). Given that binary relations and partial
functions are sets of ordered pairs they can be freely combined with sets, thus providing a
uniform treatment for all these concepts.

Furthermore, {log} provides Restricted Universal Quantifiers (RUQ) and intensional sets, that
is sets defined by a property rather than by enumerating all their elements.

{log} inherits much of standard Prolog: its syntax (apart a few minor changes), the user inter-
action modality, input/output facilities, some extra-logical features (e.g., arithmetic). Through-
out the manual, we assume the reader is familiar with Prolog and programming with Prolog
techniques, as well as with the general principles and notation of Constraint Logic Programming
languages. Moreover, for some part of the {log} language (e.g., its syntax) we will only describe
those features that really differ from standard Prolog. For other parts (e.g., input/output, arith-
metic) we will completely rely on the corresponding standard Prolog facilities. Finally, for all
the formal results concerning {log} (e.g., its logical and procedural semantics, the constraint
solving mechanism) we refer the reader to the {log} specific papers listed in the Bibliography
section.

The {log} interpreter is written in standard Prolog and has been tested using SWI-Prolog
(last releases) and can be ported to any Prolog system implementing standard Prolog with very
limited effort.1

The first version of the {log} interpreter was developed by Agostino Dovier and Enrico
Pontelli, under the supervision of Eugenio Omodeo and Gianfranco Rossi, as part of their
work to obtain the “Laurea” degree at the Department of Mathematics and Computer Science
of the University of Udine in 1991. Later on, the {log} interpreter was revised at various
times by Gianfranco Rossi, who is still maintaining the current version of the interpreter.
More recently (circa 2015), Gianfranco Rossi and Maximiliano Cristiá extended {log} in various
aspects, adding new features for dealing with binary relations, partial functions, Cartesian
products, and Restricted Intentional Sets.

The Prolog code of the {log} interpreter is available at the {log} web page:
http://www.clpset.unipr.it/setlog.Home.html

At the same page, you can find also the PDF file of this manual, various {log} library files
containing the {log} definitions of operations on sets, binary relations and lists not provided as
built-in in {log}, a file containing a number of simple preprocessing rules (“filtering rules”) that
may help constraint solving, and a few sample programs and applications written in {log}.

1As a minor difference with standard Prolog, note that the precedence of the module qualification operator
(:)—see op/3 and Defining a meta-predicate, in SWI-Prolog’s on-line user’s manual—has been changed from 600 to
350.

https://www.swi-prolog.org/pldoc/doc_for?object=op/3
https://eu.swi-prolog.org/pldoc/man?section=metapred
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2 Using {log}
Assume the {log} interpreter (Prolog source code) has been saved into a file named setlog.pl.
To start working with the interpreter, invoke Prolog and then load the {log} interpreter, e.g., by
using consult/1:

?- consult(’setlog.pl’).

The {log} interpreter is loaded into the Prolog program database. While loading, the interpreter
tries to consult four additional files from the working directory (see also the setlog_config/1
built-in predicate in Sect. 15.1):

• setlog_rules.pl: this file provides a number of additional constraint rewriting rules
that are not strictly necessary for the solver to work correctly, but can be useful to simplify
processing of the input formulas.

• size_solver.pl: this file provides the implementation of a constraint solving procedure
that allows you to extend the basic constraint solver of {log}, making it able to deal with
cardinality constraints in a correct and complete way; without loading this file you can
still use cardinality constraints but the solver is no longer guaranteed to be a decision
procedure (see Sect. 8).

• setlog_tc.pl: this file provides a number of predicates that allow you to activate (op-
tional) type checking for your programs; if this file is not loaded no type checking can be
performed (see Sect. 12).

• setlog_vcg.pl: this file provides predicates that permit to work with state machines as
in formal notations such as B and Z (see Sect. 13).

Once loaded, there are two ways to use {log}: interactively, much as Prolog itself; and
as a Prolog predicate. We will illustrate both of them with a simple example. To access the
interactive environment execute the following goal:

?- setlog.

and {log} will show you its prompt:

{log}=>

Now you can give it goals much as in the Prolog environment. For example, you can ask {log}
to solve the following formula (as regards terminology, note that saying “executing the goal G”
is the same as saying “asking {log} to solve formula G”):

{log}=> un({1},{2},A).

in which case {log} answers:

A = {1,2}

and asks you if you want another solution.
The same goal can be executed from the Prolog environment, e.g., by using the built-in

predicate setlog/1 (see Sect. 15.1 for more information):
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?- setlog(un({1},{2},A)).

making Prolog to print:

A = {1,2}

In the interactive mode, you can leave the {log} environment by issuing:

{log}=> halt.

and you can re-enter the {log} environment by simply issuing again setlog. Note that, in the
current implementation, a few run-time errors possibly detected by Prolog while executing the
{log} interpreter may force execution to leave the {log} environment. To re-enter {log}, call
setlog.

2.1 Loading {log} libraries

Libraries can be loaded in any order and in any moment. Library predicates are dealt with
as other user defined predicates. The standard {log} library can be loaded from the {log}
environment by issuing:

{log}=> consult_lib.

The same can be done from the Prolog environment by issuing

?- consult_lib.

All other libraries, e.g., the library ’setloglibpf.slog’ concerning partial functions, must
be consulted using the {log} predicate add_lib/1. For example:

{log}=> add_lib(’setloglibpf.slog’).

The same can be obtained from the Prolog environment by issuing

?- setlog(add_lib(’setloglibpf.slog’)).

See Section 16 for the complete list of the predicates defined in the standard {log} library.

2.2 Dealing with {log} programs

{log} programs are much like Prolog programs; that is, a collection of clauses saved in a file.
For example, assume the following clause is saved in file p.pl:

un12(A) :- un({1},{2},A).

Then you can load it into the {log} environment with the consult/1 predicate as follows:

{log}=> consult(’p.pl’).

and then you can use the clauses defined in it as follows:
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{log}=> un12({1,2,3}).

in which case {log} answers no because the union of sets {1} and {2} is not equal to the set
{1,2,3}.

While consulting, the interpreter shows on the standard output the number of the clause
it is currently reading or an error message if a syntax error is detected. All clauses previously
stored in the {log} program database are removed.

User defined clauses currently stored in the {log} program database can be printed out on
the standard output by executing:

{log}=> listing.

These clauses can be completely removed by executing:

{log}=> abolish.

Note that both predicates abolish and listing ignore library clauses that have been added
by either consult_lib or add_lib; thus, library clauses cannot be removed nor listed.

{log} programs can be loaded also by using consult/2. Precisely:

{log}=> consult(’file.slog’,mute).

loads the program in file.slog just like consult(’file.slog’) but without showing the
number of the clause it is currently reading; while:

{log}=> consult(’file.slog’,app).

loads the program in file.slog just like consult(’file.slog’) but without removing clauses
previously stored in the program database. {log} programs can be loaded also directly from
the Prolog environment by issuing:

?- setlog_consult(’file.slog’).

whose behavior is exactly the same as consult(’file.slog’,mute).2.

2.3 Asking for help

Finally, simple help facilities are provided in the form of built-in predicates:
• help/0 (or setlog help/0 from the Prolog environment) provides general help informa-

tion on {log};
• h/1 (both from {log} and from the Prolog environment) provides more detailed infor-

mation on {log}, according to its parameter: h(syntax) for {log} syntactic conventions;
h(constraints) for {log} constraints; h(builtins) for {log} built-in predicates; h(lib)
for {log} standard library predicates; h(prolog) for Prolog predicates for accessing {log}
from the Prolog environment; h(all) to get all available help information.

2At present, no other facility is provided to consult, remove, or listing a program in {log}. In particular, it is not
allowed to consult a program stored in file by using the syntax [file], as usual in Prolog. Moreover, there is no
support for reconsulting a program. The standard Prolog predicates abolish/2 and listing/1 are not provided
for now.
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3 Solving formulas with extensional sets

An extensional set is a set whose elements are enumerated. For example, {1,a,hello} is an
extensional set with three elements. Some of the elements of an extensional set can be other
extensional sets. For example, {a,b} is an element of the following extensional set {51,{a,b}}.
Elements inside an extensional set can be of any sort (or type or class), as shown in the previous
examples.

The most simple extensional set is the empty set noted in {log} as {}. The second most simple
extensional set is the singleton set, noted in {log} as {e}, where e is its single element. Then we
can ask {log} whether the empty set is equal to a singleton set:

{log}=> {} = {1}.

in which case the answer is, obviously, no.
As in mathematics, {log} extensional sets can contain variables. In {log}, as in Prolog,

variables are denoted by identifiers starting with an uppercase letter or an underscore. Then,
we can ask {log} to solve the following equation:

{log}=> {X} = {1}.

where X is a variable. In this case the answer is:
X = 1

Note that:
{log}=> {x} = {1}.

results in a no answer because x is a constant not equal to 1.
A more interesting formula is the following:

{log}=> {X,Y} = {2,1}.

because it has two solutions:
X = 2, Y = 1
X = 1, Y = 2

that {log} is able to find by exploiting set unification [8].
{log} also provides a notation (not used in mathematics) to define sets. The expression

{x / A} represents the set {x}∪A. Then, A must denote a set. So, for instance, we can write
{1 / {a / {}}} which represents the set {1}∪ ({a}∪∅) which is equal to the set {1,a}. Given
this obvious equality, {log} allows a more user-friendly notation: we can write {1,a / {}} in-
stead of {1 / {a / {}}}; and {1,a / {}} can be further simplified as {1,a}. When combined
with the fact that variables can be sets, this notation provides a new level of expressiveness
to the language. For instance, it is interesting to ask {log} for the solutions of the following
formula (which again calls into play set unification):

{log}=> {X/A} = {6,7,8}.

as it has six:
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1 X = 6, A = {7,8}
2 X = 6, A = {6,7,8}
3 X = 7, A = {6,8}
4 X = 7, A = {6,7,8}
5 X = 8, A = {6,7}
6 X = 8, A = {6,7,8}

Note that, for instance, the second solution states that {6 / {6,7,8}} is equal to {6,7,8}
which is true in virtue of the so-called absorption property of set theory [4]. Recall that
{6 / {6,7,8}} can be written as {6,6,7,8}where the presence of duplicate elements becomes
evident.

Note how the number of solutions increases if we want to identify more elements in the set.
For example, the following equation:

{log}=> {X,Y/A} = {6,7,8}.

has 30 solutions, among which:
X = 6, Y = 7, A = {8}
X = 6, Y = 7, A = {7,8}
X = 6, Y = 6, A = {6,7,8}

In {x1,...,xn / A}, x1,...,xn is called element part and A is called set part. It is very impor-
tant to remark that since the set part of an extensional set can be a variable (representing any
finite extensional set), then {log}’s extensional set constructor allows users to write unbounded
finite sets. In effect, an expression such as {x / A} represents a finite but unbounded set as the
set denoted by A can have any number of elements.

In addition to extensional set terms, sets can also be denoted by other types of set terms,
specifically, Cartesian products (Sect. 4), intensional set terms (called RIS, Sect. 5), and integer
intervals (Sect. 9).

3.1 Set operators

{log} supports all the classic set operators. All set operators are given as predicates. Then, for
instance, we can ask {log} to find a value for A in:

{log}=> inters({1},{2},A).

making {log} to answer
A = {}

as Amust be equal to the intersection between {1} and {2}.
Table 1 lists all the set operators available in {log} as predicates. As can be seen, most

operators have their own negation. Although {log} implements negation (see Sect. 3.4), it is
always advisable to use the negated predicates.

All the arguments of all these predicates can be variables and set terms. Even the in and
nin predicates admit sets as the first argument because in {log} set elements can be sets. For
example:
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Operator {log} Meaning
set set(A) A is a set
equality A = B A = B
membership x in A x ∈ A
union un(A,B,C) C = A∪B
intersection inters(A,B,C) C = A∩B
difference diff(A,B,C) C = A\B
subset subset(A,B) A ⊆ B
disjointness disj(A,B) A ∥ B
strict subset ssubset(A,B) A ⊂ B
symmetric difference sdiff(A,B,C) C = A△B

Negations
set nset(A) A is not a set
equality A neq B A ≠ B
membership x nin A x ∉ A
union nun(A,B,C) C ≠ A∪B
intersection ninters(A,B,C) C ≠ A∩B
difference ndiff(A,B,C) C ≠ A\B
subset nsubset(A,B) A ⊈ B
disjointness ndisj(A,B) A ̸∥ B

Table 1: Set operators available in {log}

{log}=> {1} in {2,a,{1}}.

makes {log} to answer yes.
We believe all set operators are self-explanatory although set and nset require some clar-

ifications. Users seldom need to indicate that something is a set when writing {log} code. In
general, {log} automatically infers the sort of variables by analyzing the formulas in which they
participate. Hence, predicates set and nset are generally used internally by {log}. Users may
see a set predicate as part of the answer given by {log} for some formulas—see an example in
the next section. In addition to sorts, {log} defines a type system, see Section 12.

All these operations are dealt with as constraints, and, hence, they can be used with no
concern about the instantiations of their arguments. The predicates listed in Table 1, along with
those listed in Tables 3, 5, 6, 8, and 9, represent all and only the atomic constraints available in
{log}.

3.2 Answers to queries and the groundsol predicate

The first answer to the following query:

{log}=> diff({1},A,B).

is the following:
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A = {1/_N1}
Constraint: subset(B,{1}), 1 nin _N1, un(B,_N1,_N2), 1 nin _N2, set(_N2),

1 nin B, set(_N1), disj(B,_N1), set(B)

where _N1 is a variable name automatically generated by {log} and Constraint is a list of
constraints that the variables returned by {log} must verify. Variables automatically generated
by {log} are called new or fresh variables. {log} will include many fresh variables in its answers.
In general, the answer returned by {log} is composed of:

• A (possibly empty) list of equalities of the form v = t where v is a variable and t a term
which can contain other variables.

• A (possibly empty) list of constraints which contain variables.
The constraints occurring in the computed answer are called irreducible constraints.

The above answer is interpreted as follows: B is the result of computing the set difference
between {1} and A if and only if there exist sets _N1 and _N2 such that A = {1/_N1}, B is a subset
of {1}, 1 doesn’t belong to _N1, _N2 is the union of B and _N1, 1 doesn’t belong to _N2 nor to B
and B and _N1 are disjoint. Hence, _N1 and _N2 are existentially quantified variables—where
the existential quantifier is implicit. This interpretation can be easily and naturally generalized
to every answer returned by {log}.

In many academic papers about {log} it has been shown that the conjunction of constraints
returned by {log} is always satisfiable. In other words, there are always values that can be bound
to the free variables appearing in the returned answer satisfying the conjunction of equalities
and constraints. In many answers it is quite easy to find these values but this is not always
the case. When there are no integer variables involved, a possible value for set variables is
the empty set. That is, if set variables are substituted by the empty set the conjunction of the
returned equalities and constraints is satisfied. For example, let’s substitute B, _N1 and _N2 in
the above answer by the empty set:

A = {1/{}}
Constraint: subset({},{1}), 1 nin {}, un({},{},{}), 1 nin {}, set({}),

1 nin {}, set({}), disj({},{}), set({})

It’s clear that A = {1} and that all the constraints are true. For example, subset({},{1}),
interpreted as ∅ ⊆ {1}, is obviously true; and 1 nin {}, interpreted as 1 ∉ ∅, is also evidently
true.

As we have said, {log} may return several answers to a given goal (just press letter ‘y’ when
{log} asks you for more solutions). We have proved that the disjunction of all these answers is
equivalent to the original formula. Since an answer may contain variables, it represents a (possibly
infinite) set of ground (or concrete) solutions of the original formula. A ground solution is
a solution where variables appear only at the left-hand side of the equalities composing a
{log} answer. For example, we have just seen that A = {1}, B = _N1 = _N2 = {} is a ground
solution of the first answer returned by {log} after executing diff({1},A,B). Whereas the
bindings A = {1,2}, B = {}, _N1 = _N2 = {2} represent another ground solution. So by
changing 2 by any number different from 1we get one more solution. When the initial formula
belongs to one of the fragments of set theory for which {log} implements a decision procedure,
{log} returns a finite number of answers. Hence, in these cases, the disjunction of the answers
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returned by {log} is a finite representation of all the (possibly infinite) ground solutions of the initial
formula.

Just above we showed how to get a concrete solution from an answer returned by {log}.
Basically, we substituted all set variables by the empty set. However, when integer variables
are involved, finding a ground solution satisfying the computed answer is more complex. For
these cases, and even for complex formulas not involving integer variables, {log} provides the
predicate groundsolwhich forces {log} to produce ground solutions.

Consider the following examples.

{log}=> groundsol.
{log}=> diff({1},A,B).

A = {1},
B = {}

{log}=> X in A.

X = n0,
A = {n0}

When groundsol is active, {log} binds set and integer variables to (ground) sets and integer
numbers, respectively. For the remaining free variables, {log} binds constants of the form
n⟨number⟩, where number is an integer number starting from zero.

To restore the default behavior issue nogroundsol.
groundsol also works (somewhat differently) when {log} is running in typechecking mode

(see Section 12).
Hereafter, if not explicitly mentioned, all sample queries to {log} will be intended to be

issued not in groundsolmode.

3.3 Considerations on set membership and not membership

It is easy to prove the following:

x ∈ A ⇔∃B : A = {x}∪B ∧ x ∉ B (1)

This equivalence is used by {log} when it finds a constraint of the form X in A. In fact {log}
transforms X in A into A = {X/_N1} & X nin _N1, where _N1 is a fresh variable, which is
aligned with the semantics of the {_/_} set constructor.

On the other hand, when {log} finds a constraint of the form A = {X/B} it does not as-
sume X nin B. This may lead to a degraded performance as {log} will open two computation
branches: one in which X nin B holds, and another one in which B = {X/_N1} & X nin _N1
holds. Then, in general, {log} will need twice the time to solve a formula including A = {X/B}
than the same formula but including X in A instead of the latter.

Observe that in most situations, what you want to say is X in A rather that A = {X/B}, for
some B. In these situations it is advisable to use the former over the latter. There are situations,
however, where B appears in some other constraint of the formula, meaning that the scope of B
is not the sub-formula representing the membership relation like in (1), but the whole formula.



10

Connective {log} Meaning
conjunction & ∧
disjunction or ∨
negation neg ¬
implication implies ⇒
not implication nimplies ̸⇒
negation as failure naf ¬

Table 2: Propositional connectives available in {log}

In these situations conjoining X nin B might not be what the formula is intended to state. So
{log} leaves this to the user’s discretion.

3.4 Introducing formulas

In this section we will show how to write some of the formulas accepted by {log}.
The propositional connectives available in {log} are listed in Table 2. Formulas are built

from these connectives in the usual way. Arguments of the connectives can be either atomic
constraints, restricted quantifiers (see Sect. 6), user-defined or built-in predicates, as well as
other {log} formulas, built in the same way.

As can be seen, in {log} conjunction is written with the & character (instead of the comma as
in Prolog). Then, in asking {log} to solve the formula:

{log}=> un({1/B},{j},A) & j in B.

it answers:
B = {j/_N1},
A = {1,j/_N1}
Constraint: j nin _N1, set(_N1)

Logical disjunction is also available in {log} by means of the or connective (instead of the
semicolon as in Prolog). The same formula given above but using disjunction in place of
conjunction:

{log}=> un({1/B},{j},A) or j in B.

has two solutions:
A = {j,1/B}
Constraint: set(B)

B = {j/_N1}
Constraint: set(A), j nin _N1, set(_N1)

where A can be any set in the second solution.
Disjunction and conjunction can be freely combined to form complex formulas. As con-

junction has higher precedence than disjunction use parenthesis to write the right formula.
Disjunction is managed as in Prolog, i.e., through non-determinism and backtracking. Hence,
if a variable name appears in two or more disjuncts then it actually represents a different variable
in each disjunct.
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3.5 Negation and the let construct

Negation is available through predicates naf and neg. naf computes the classical “Negation
as Failure” of Prolog: naf(G), fails if G has a solution, and succeeds otherwise. neg computes
the propositional negation of its argument, possibly applying Boolean laws. In particular, if
the argument is a {log} constraint, then the language itself provides its negation. For example,
neg(X in A & Z nin C) becomes X nin A or Z in C.

Both forms of negation, however, may work incorrectly in general. More specifically, naf
works well only when variables in the formula are properly instantiated; neg may not work
well when the negated formula contains unrestricted existentially quantified variables inside the
formula.

As an example of the latter, consider the following user-defined predicate

singleton_set(X) :- X = {Y}.

which is true when X is a singleton set. In {log}, as in Prolog, variables that occur only in the
body of a clause (e.g., Y) are all implicitly existentially quantified (excluding “local” variables
occurring in intensional sets—Sect. 5—and restricted quantifiers—Sect. 6). Hence, solving the
body of this clause amounts to solve the following formula:

∃X : (∃Y : X = {Y}) (2)

If we want also the negative version of this predicate, then we can define a new predicate, say
notsingleton_set(X), which is true whenever X is not a singleton set (e.g., {}, {1,2}, 1,. . . ).
Hence, the clause body of notsingleton_set should express the formula:

∃X : ¬ (∃Y : X = {Y}) ≡ ∃X : (∀Y : X ≠ {Y}) (3)

Observe the existentially quantified variable inside the formula to be negated. The definition
of notsingleton_set(X) using neg is as follows:

notsingleton_set(X) :- neg(X = {Y}).

In this case, however, solving the clause body amounts to solve the formula:

∃X : (∃Y : X ≠ {Y}) (4)

Note the difference between the formula obtained by using neg (i.e. (4)) and the actual negation
of (2) (i.e. (3)). Thus, for example,

{log} => notsingleton_set({}).

correctly answers yes, but issuing

{log} => notsingleton_set({1}).

we get

true Constraint: S neq {_N1}
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instead of no.
Alternatively, one can use naf for expressing negation instead of neg. In this case, however,

the formula obtained by solving the clause body of notsingleton_set is:

∀X,Y : X ≠ Y (5)

since, in general, all variables in a predicate which is negated through naf are dealt with as
universally quantified. Thus, for example,

{log} => notsingleton_set({}).
{log} => notsingleton_set({1}).

correctly answer yes and no, respectively, but issuing

{log} => notsingleton_set(S).

we get a no answer which is evidently wrong.
Note that implementing the other form of formula (3), i.e. ∃X : (∀Y : X ≠ {Y}), is not feasible

in the current version of {log}, since the general form of universal quantification required by
this formula is not supported yet.
singleton_set can be written, however, in such a way that negating it by means of neg

works correctly.

singleton_set(X) :- size(X,1).

where size computes the cardinality of its first argument (see Sect. 8). Note that the body of
this clause does not contain any new existentially quantified variable. In this way:

notsingleton_set(X) :- neg(size(X,1)).

is equivalent to:

notsingleton_set(X) :- nsize(X,1).

which coincides with the logical negation of singleton_set. Nevertheless, in general, is not
always possible to find a {log} encoding of a given mathematical formula whose negation is
correctly computed by neg.

The let construct. Say you want to compute the result of the following set expression:

(A∪B)∩C

In {log} it can be done as follows:

un(A,B,U) & inters(U,C,Res)

which is interpreted as:

A∪B = U ∧ U∩C = Res (6)

See that we need to introduce two new variables: U to get a partial result; and Res to get the
desired result. Note that U is simply a “name” for A∪B. Besides, note that U is a shared variable
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in the sense that it is present in two (or more) constraints. Now, say that you want to state that
Res is different from (A∪B)∩C, i.e.:

A∪B = U ∧ U∩C ≠ Res (7)

In {log} using neg in a direct way, i.e., by issuing neg(un(A,B,U) & inters(U,C,Res)), we
actually get:

¬ (A∪B = U ∧ U∩C = Res) ≡ A∪B ≠ U ∨ U∩C ≠ Res

which does not correspond to the intended formula (7).
Hence, for these cases (which appear frequently in {log}) the language provides the let/3

construct. We can use it to capture the fact that we are naming a subexpression as follows:

let([U],un(A,B,U),inters(U,C,Res))

Then, {log} rewrites the above formula as:

un(A,B,U),inters(U,C,Res)

However, its negation:

neg(let([U],un(A,B,U),inters(U,C,Res)))

is rewritten as:

un(A,B,U) & ninters(U,C,Res)

which is the intended formula (recall that ninters is the negated version of inters, see Table
1).

The general form of let is as follows:

let(list of vars,𝜓,𝜙)

where:

• list of vars is a list of distinct variables not appearing anywhere else in the formula.

• 𝜓 is a conjunction of functional predicates and equalities of the form X = t, where X is a
variable and t a term. A functional predicate is a predicate that behaves as a function
for its last argument. For example, union, intersection, set difference, etc. are functional
predicates. The last argument is called result. The is predicate is functional but on its first
argument. The variables appearing in list of vars must be the results of the functional
predicates and the variables at the right-hand side of the equalities in 𝜓. A variable in
list of vars can appear as the result of only one functional predicate or at the right-hand
side of only one equality3.

• 𝜙 is a {log} formula.

3The current version of {log} doesn’t implement all these restrictions, so users are responsible of enforcing them.
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{log} implements two simple rewrite rules for let:

let(list of vars,𝜓,𝜙) −→∃ list of vars(𝜓 ∧ 𝜙)
neg(let(list of vars,𝜓,𝜙)) −→∃ list of vars(𝜓 ∧ neg(𝜙))

The let construct is useful in general when we have to compute the negation of a conjunction
where there are shared variables among its constraints. Consider the following {log} formula:

S = ∅ ∧ X ∈ S

If we apply neg to it we get:

S ≠ ∅ ∨ X ∉ S

which is not correct because S = ∅ ∧ X ∈ S ≡ X ∈ ∅ and so the negation should be just X ∉ ∅. The
problem arises from the fact that S is shared among S = ∅ and X ∈ S. We can solve the problem
by using let:

let([],S = {},X in S)

In which case the negation is:

S = {} & X nin S

Negation of user-defined predicates. When using neg, if its argument is a user-defined pred-
icate, then the user must provide its negation by means of another user-defined predicate. If
the head symbol of a user-defined predicate is p, with arity n ≥ 0, then its negation is a user-
defined predicate named n_p, with arity n. That is the prefix n_ is added to p. In this way
{log} considers that n_p is the negation of p whereas the latter is the negation of the former:
neg(p) is n_p and neg(n_p) is p. Therefore, users are advised to refrain from using the prefix
n_ in other contexts. As an example, by using n_singleton_set, instead of notsingleton_set,
as the name of the predicate defined above, then one can apply directly neg to the positive
predicate, as for instance:

{log} => neg(singleton_set({1})).

If the solver does not find any clause defining n p when calling neg(p(t1,...,tn), it will use
naf(p(t1,...,tn) in its place and, if p(t1,...,tn) is not ground, then it will print the warning
message: using unsafe negation.

Implication. Finally, note that implication is defined in {log} as follows:

P implies Q :- neg(P) or Q.

This means that implies works correctly much as neg does. {log} also introduces nimplies as
follows:

P nimplies Q :- P & neg(Q).
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If implies or nimplies are used with user-defined predicates, consider that you’ll have to
declare the negation of those user-defined predicates because, as explained above, {log} doesn’t
automatically compute the negation of user-defined predicates. A common pattern when {log}
is used to prove the unsatisfiability is:

¬ (p ⇒ q)

which {log} rewrites as:

p ∧ ¬ q

Then, if q is a user-defined predicate, a predicate named n_q representing the negation of q must
be in scope.
neg is also implicitly used when solving some constraints on Restricted Intensional Sets

(Sect. 5.1).

3.6 Proving unsatisfiability (i.e., proving theorems)

{log} can be used to prove that a given formula is unsatisfiable. The following is a trivial
example.

{log}=> {X,Y} = {Z} & X neq Y.

no

As can be seen, {log} answers nomeaning the formula is unsatisfiable (i.e., there are no values
for X, Y and Z that can make the formula true).

The following is a more interesting example as we are proving a property of set union.

{log}=> neg(un(A,B,C) implies un(B,A,C)).

no

Clearly, if the above formula is unsatisfiable for all finite sets A, B and C, then the inner formula
(un(A,B,C) implies un(B,A,C)) is valid (i.e., it’s a theorem) for all finite sets A, B and C. So we
have just proved that union is commutative for all finite sets. However, have a look at Sect. 3.5 to
see some limitations of neg.

Hence, if you want to check if p is a theorem, call {log} on ¬ p and wait for a no answer.

In general, the capability of {log} to prove unsatisfiability depends on whether or not the
formula belongs to a class of formulas for which {log} implements a decision procedure. {log}
implements a decision procedure for formulas involving extensional sets, the operators of Table
1, and the first two connectives of Table 2. In coming sections we will show other fragments of
set theory for which {log} implements decision procedures.

Although the use of neg in the above goal is safe, it can also be written without neg as
follows:



16

un(A,B,C) & nun(B,A,C).

Indeed, note that ¬ (p ⇒ q) ≡ ¬ (¬ p ∨ q) ≡ (p ∧ ¬ q). As nun is exactly ¬ un, then both formulas
are equivalent.

Precisely, the introduction of other connectives besides conjunction and disjunction may
compromise decidability, as indicated in Sect. 3.5. For example, as shown in that section, if
negation is used in combination with existentially quantified variables, {log} may be not able to
work correctly. Furthermore, if the user-defined predicates possibly involved in the formula are
defined through recursive definitions, the proof of the formula may be non-terminating. Also,
if some extra-logical built-in predicates are involved in the formula, the solver is not guaranteed
to work correctly whenever variables are not enough instantiated.

Other cases in which {log} may be not able to behave as a decision procedure, e.g., when
intensional sets are involved (Sect. 5.1), will be pointed out in next sections.

When {log} is used to prove unsatisfiability we say that it’s used as an automated theorem
prover. Proving unsatisfiability can be computationally very hard. The prover mode of operation
(see next section) can help on that. Nevertheless, see Sect. 11 for a detailed account of user
commands that might overcome this difficulty.

3.7 Modes of operation

Users can run {log} in one of two modes of operation: the prover mode and the solver mode.
The default mode when {log} is loaded is the prover mode. Users can switch from one mode to
the other by issuing:

{log}=> mode(solver).

or
{log}=> mode(prover).

Although it is hard to predict in advance which mode of operation will be the best for a given
formula, as a rule of thumb, we can say that if you want to use {log} as a programming language,
then the first choice would be the solver mode; and if you want to use it as an automated prover,
then use it in prover mode.

In general, in prover mode {log} will be more efficient in concluding that the formula is
unsatisfiable, than in solver mode. The prover mode has more advanced options that can
further improve {log}’s efficiency when attempting to prove unsatisfiability, as is explained in
Section 11. In turn, the solver mode is better when the formula passed to {log} is supposed to
be satisfiable. In general, in these cases {log} will return solutions with fewer constraints and
more equalities, than in solver mode. This means that if users want to use {log} as a prototyping
environment, they should use it in solver mode.

For example, executing the following goal in prover mode:

{log}=> subset(X,{a,b}).

makes {log} to return the following answer:
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true
Constraint: subset(X,{a,b}), set(X)

meaning that the input formula is anyway satisfiable. If the same goal is executed in solver
mode, instead, {log} will return the following four solutions:

X = {a,b}
X = {a}
X = {b}
X = {}

Note that if groundsol is activated when in prover mode, the subset goal above will return
only one ground solution whereas in solver mode it will return the same four solutions.

4 Solving formulas with binary relations

A binary relation is a set of ordered pairs. If X and Y are two sets then any set R such that
R ⊆ X×Y is a binary relation. Given that binary relations are sets (of ordered pairs) then {log}
can be used to work with formulas involving binary relations [12]. Such formulas, however,
may involve not only set operators (cf. Table 1) but also relational operators. For this purpose,
{log} introduces a rich set of relational operators, such that it can determine the satisfiability of
any formula including them. Besides, {log} provides a new set term, cp(A,B), whose semantics
is the Cartesian product (CP) between sets A and B [11]. Note that a Cartesian product is a
binary relation.

For example, asking {log} to solve the following formula:

{log}=> dom(R,{a}).

makes the solver to return the most general binary relation whose domain is the set {a}. This
relation is given as follows:

R = {[a,Y]/S}
Constraint: comp({[a,a]},S,S), [a,Y] nin S, rel(S)

There are several things to comment about this answer. R is given as an extensional set
containing the ordered pair [a,Y] because Rmust contain at least one ordered pair (because it
has a not-empty domain) whose first component must be a, while the second component can
be anything—which is represented by making the second component to be a variable.

Observe that ordered pairs are noted with square brackets. Then, [a,b] represents the
ordered pair (a,b). Note that, [a,b] = [c,d], if and only if a = c and b = d. In this manual,
when writing mathematics we will use parenthesis to note ordered pairs, but we will use square
brackets when we show {log} code. {log} provides the predicate pair(t) (resp., npair(t)) to
constrain a term t to be (resp., not to be) an ordered pair.

Moreover, the set part of R (i.e., S) is constrained to be a binary relation by means of the
predicate rel(S). Indeed, rel forces its argument to be a set of ordered pairs. However,
constraining S to be a relation is not enough for the correctness of the solution. The domain



18

of S must be a subset of {a}. This is forced by the constraint comp({[a,a]},S,S). In effect,
comp(Q,T,U) means U = Q◦T, that is U is the result of the relational composition between Q
and T. Formally:

Q◦T = {(x,z) | ∃y : (x,y) ∈ Q ∧ (y,z) ∈ T}

Then, it can be shown that dom({(a,a)}◦T)= {a}, thus guaranteeing that dom({(a,y)}∪T)= {a},
for any y.

Finally, note that the constraint [a,Y] nin S is generated by the solver to avoid possibly
infinite computations due to the application of the absorption property, which might gen-
erate set terms with infinitely many occurrences of the same element. In fact, the formula
R = {x/S} & x nin S ensures that S cannot contain any occurrence of x.

Since Cartesian products are binary relations, a term cp(A,B) can be passed to any predicate
expecting a binary relation as its argument. Hence, we can use Cartesian products with
relational operators, for example, as follows:

{log}=> dom(cp({a/A},B),{a}).

making {log} to return A = {} and A = {a}.
In turn, since binary relations are sets of ordered pairs, they can be built by means of the

same set constructors described in Section 3 and they can be used in the same places as any other
set terms. In particular the empty binary relation is denoted with {}. Furthermore, formulas
involving relational operators are built as we shown in Section 3.4 (i.e., by means of &, or and
the other logical connectives). Besides, they can be freely combined with formulas involving
set operators. For example:

{log}=> dom(R,{a/B}) & [b,X] in R.
{log}=> cp(A,B) = {} & ran(R,B).

are formulas combining set and relational operators and making use of the extensional set and
Cartesian product constructors.

It is very important to remark that, as can be seen in the previous formula, not only the
relation is a set in exactly the same sense of the sets introduced in Section 3, but also its domain.
This clearly shows that {log} allows for a completely uniform treatment of sets and binary
relations (including Cartesian products).

Note that Cartesian products can be used to assert that a binary relation is of a particular
type. If you want binary relation R to be of type A×B you can state:

{log}=> subset(R,cp(A,B)).

So, for instance, {log} will answer no if the following formula is provided:

{log}=> subset(R,cp(A,{1,2})) & R = {[X,1],[Y,9]}.

but it will find solutions if the following one is given:

{log}=> subset(R,cp(A,{1,2})) & R = {[X,1],[Y,Z]}.

See more about types in {log} in Section 12.
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Operator {log} Meaning
binary relation rel(R) R is a binary relation
domain dom(R,A) domR = A
range ran(R,A) ranR = A
composition comp(R,S,T) T = R◦S
inverse inv(R,S) S = R−1

identity relation id(A,F) idA = F
domain restriction dres(A,R,S) S = A◁R
domain anti-restriction dares(A,R,S) S = A−◁R
range restriction rres(R,A,S) S = R▷A
range anti-restriction rares(R,A,S) S = R−▷A
overriding oplus(R,S,T) T = R⊕ S
relational image rimg(A,R,B) B = R[A]

Negations
binary relation nrel(R) R is not a binary relation
domain ndom(R,A) domR ≠ A
range nran(R,A) ranR ≠ A
composition ncomp(R,S,T) T ≠ R◦S
inverse ninv(R,S) S ≠ R−1

identity relation nid(A,F) idA ≠ F
domain restriction ndres(A,R,S) S ≠ A◁R
domain anti-restriction ndares(A,R,S) S ≠ A−◁R
range restriction nrres(R,A,S) S ≠ R▷A
range anti-restriction nrares(R,A,S) S ≠ R−▷A
overriding noplus(R,S,T) T ≠ R⊕ S
relational image nrimg(A,R,B) B ≠ R[A]

Table 3: Relational operators available in {log} (R, S and T are binary relations)

4.1 Relational operators

Table 3 lists all the relational operators, along with their negations, available in {log} as atomic
constraints. In turn, Table 4 gives the mathematical definition of each relational operator given
in Table 3. All the arguments of all these predicates can be variables and set terms, but not RIS
terms (Sect. 5.1) nor integer intervals (Sect. 9).

As with set operators, we believe all relational operators are self-explanatory. Same con-
siderations mentioned for set and nset apply for rel and nrel. That is, in general, users do
not need to indicate that something is a binary relation because {log} automatically infers this
fact. Thus, strictly speaking, the definitions in the first part of Table 3 should be extended by
conjoining the predicates rel for all the relations occurring as arguments in the operators. For
example, the precise meaning of dom(R,A) is rel(R) ∧ domR = A. Of course, similar observa-
tions apply to the negative versions of these predicates. For example, the precise meaning of
ndom(R,A) is nrel(R) ∨ domR ≠ A. For example:

{log}=> ndom({[a,1]/R},{a}).

has two solutions:
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Operator Definition
domain domR = {x | ∃y : (x,y) ∈ R}
range ranR = {y | ∃x : (x,y) ∈ R}
composition R◦S = {(x,z) | ∃y : (x,y) ∈ R ∧ (y,z) ∈ S}
inverse R−1 = {(y,x) | (x,y) ∈ R}
identity relation idA = {(x,x) | x ∈ A}
domain restriction A◁R = {(x,y) | (x,y) ∈ R ∧ x ∈ A}
domain anti-restriction A−◁R = {(x,y) | (x,y) ∈ R ∧ x ∉ A}
range restriction R▷A = {(x,y) | (x,y) ∈ R ∧ y ∈ A}
range anti-restriction R−▷A = {(x,y) | (x,y) ∈ R ∧ y ∉ A}
overriding R⊕ S = (domS−◁R)∪S
relational image R[A] = ran(A◁R)

Table 4: Definition of relational operators

R = {[_N3,_N2]/_N1} Constraint: set(_N1), _N3 neq a

R = {_N2/_N1} Constraint: set(_N1), npair(_N2)

where the second one simply states that R in not a binary relation because it contains something
that is not an ordered pair.

4.2 Partial functions

A partial function is a binary relation where no two ordered pairs share the same first component.
Formally, f is a partial function if and only if f is a binary relation and:

∀x,y1 ,y2 : (x,y1) ∈ f ∧ (x,y2) ∈ f ⇒ y1 = y2 (8)

Therefore, partial functions are a subset of binary relations. This means that {log} can also
be used to find solutions for formulas involving partial functions [9]. These formulas, are built
as formulas involving binary relations plus the addition of the predicates listed in Table 5.

Differently from rel, users must explicitly include a pfun predicate for all those binary
relations they want to be partial functions. {log} will only automatically assert that F is a
partial function if it appears as an argument of one of the predicates implementing partial
function operators, as shown in the first part of Table 5. For example, the following formula is
unsatisfiable if F is intended to be a partial function but it is satisfiable for a binary relation:

{log}=> dom(F,{a}) & [a,Y1] in F & [a,Y2] in F & Y1 neq Y2.

Then, {log} gives as a first solution:

F = {[a,Y1],[a,Y2]/G}
Constraint: [a,Y2] nin G, comp({[a,a]},G,G), [a,Y1] nin G,

Y1 neq Y2, rel(G)

for that formula but it answers no for the following:
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Operator {log} Meaning
partial function pfun(F) F verifies (8)
function application apply(F,X,Y) F(X) = Y
domain dompf(F,A) dom(F,A)
composition comppf(F,G,H) comp(F,G,H)
domain restriction drespf(F,G,H) dres(F,G,H)

Negations
partial function npfun(F) F does not verifies (8)
function application napply(F,X,Y) F(X) ≠ Y
domain ndompf(F,A) domF ≠ A

Table 5: Partial function operators available in {log} (F, G and H are partial functions)

{log}=> pfun(F) & dom(F,{a}) & [a,Y1] in F & [a,Y2] in F
& Y1 neq Y2.

Note that, as observed for relational operators, strictly speaking, the definitions of the
predicates listed in Table 5 should include the constraints pfun and npfun that are automatically
added by {log}. Thus, for instance, the precise meaning of dompf(F,A) is pfun(F) ∧ domF = A;
while the precise meaning of ndompf(F,A) is npfun(F) ∨ domR ≠ A.

{log} provides also a less restrictive form of function application through the predicate
applyTo. applyTo(R,X,Y) is true if R is a binary relation containing exactly one pair whose first
component is X and whose second component is Y. Formally, applyTo(R,x,y) holds iff:

(x,y) ∈ R ∧ (∀y1 : (x,y1) ∈ R ⇒ y1 = y) (9)

This means that one can use the applyTo on a binary relation which is not a function but
which is a function only for certain values of its domain. For example:

{log}=> applyTo({[1,2],[2,3],[2,4]},1,Y).

makes {log} to answer Y = 2, even if {[1,2],[2,3],[2,4]} is not a function. Conversely:

{log}=> applyTo({[1,2],[2,3],[2,4]},2,Y).

makes {log} to answer no, since {[1,2],[2,3],[2,4]} is not a function in 2.
Observe that the negations of predicates comppf, drespf, and applyTo are not available

(at present) as {log} constraints, but they are provided as library predicates by the libraries
setloglibpf.slog and setloglib_tc.slog (as such, they take the names n_comppf, n_drespf,
and n_applyTo, respectively).

4.3 Decidable formulas involving binary relations

{log} behaves as a semi-decision procedure for the theory of finite, unbounded binary relations
(including Cartesian products). This means that in general {log} will return the right answer
but for some formulas it will not return; or it will return some solutions and then will block; or



22

it will return an infinite number of solutions. In any case the solutions are correct but it will fail
in proving that some formulas are unsatisfiable.

More precisely, such undesired behaviors may appear when comp constraints are involved,
either explicitly or implicitly. The following are two simple formulas showing non-termination
of {log}:

{log}=> comp({[X,Z]/R},{[Z,Y]/S},R).
{log}=> comp(R,S,{[X,Z]/S}).

Actually, with the first goal {log} enters an infinite loop producing no answer, while with the
second one it returns an infinite number of solutions. Intuitively, the problem with the above
formulas is caused by the presence of comp constraints where the first or second argument
shares a variable with the third argument. Generally speaking, in these cases, {log} is not able
to compute a finite representation for the possible solutions.

The sharing of a variable between the third and the other two arguments of a comp constraint
can be also indirect, through some other constraint. For instance:

{log}=> comp(R,S,{[X,Z]/U}) & un(S,T,U).

Moreover, the sharing can be generated during constraint solving, even starting with a formula
that initially does not contain any such situation.

In our experience, however, all these “unpleasant” formulas occur very rarely in practice.
It is worth noting that the presence of a variable shared in a comp constraint does not

necessarily implies non-termination. For instance, the following formula:

{log}=> comp({[X,Z]/R},{[Z,Y]/S},R) & id(A,R).

contains one such unsafe variable sharing, but nevertheless {log} terminates, returning a finite
number of solutions.

5 Intensional sets

Intensional sets, also called set comprehensions, or set-builder notation, are sets described by a
property whose elements must satisfy rather than by explicitly enumerating their elements.
Intensional sets are widely recognized as a key feature to describe complex problems.

The main way to express intensional sets in {log} is by means of the so called Restricted
Intensional Sets (RIS) [10]. Another way is by using general intensional sets (GIS). The next
subsection deals with RIS, while GIS are briefly described in subsection 5.2.

5.1 Solving formulas with Restricted Intensional Sets

A Restricted Intensional Set (RIS) denotes a finite intensional set. In the language of mathematics
a RIS is noted as:

{x : D | F(x) •P(x)} (10)

where x, called control variable, is a bound variable whose scope is the RIS itself; D, called domain,
is a set; F, called filter, is a formula; and P, called pattern, is an expression. The semantics of a
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RIS is the following:

{y : ∃x(x ∈ D ∧ F(x) ∧ y = P(x))} (11)

that is, the elements of the RIS are of the form P(x) for all those x ∈ D satisfying F(x).
In {log} a RIS such as (10) is written as follows:

ris(X in D,[],F(X),P(X))

where D can be any kind of set except for cp and variable intervals (see Section 9); F is a {log}
formula and P is a {log} term. The second argument (i.e., []) will be explained shortly. A {log}
RIS term can be more complex but for the moment we will focus on this simpler construction.

In the current version, {log} admits RIS in all the set operators of Table 1 and dompf (only
as first argument) and pfun. This means that RIS cannot be used as arguments or as part of
arguments passed in to relational operators (cf. Tables 3 and 5).

The following formula uses a RIS to find out if N is a prime number or not (int(m,n) is a set
term denoting the integer interval [m,n], see Section 7 for further details):

{log}=> N > 1 & MD is N div 2 &
ris(X in int(2,MD),[],0 is N mod X,X) = {}

The idea is to check if the set of proper divisors of N (i.e., {x : [1,𝑀𝐷] | 0 = N mod x}) is empty
or not. Then, if N is bound to, say, 20, {log} answers no; but if it is bound to 101 it answers
N = 101, MD = 50.

Note that in the last example the pattern is the control variable (i.e., X). When this is the
case the pattern can be omitted. Similarly, when the second argument is the empty list it can be
omitted. Thus, the RIS above can be written more concisely as:

ris(X in int(2,MD),0 is N mod X)

It is important to observe that predicates occurring in a RIS formula can be not only any
of the predefined predicates available in {log}, but also any user-defined predicate. Since in
some cases the solver needs to negate the RIS formula, then, in general, it is necessary that the
negated versions of all the user-defined predicates occurring in the RIS formula are in scope. In
this regard, remember that (see Sect. 3.4) if p is the name of a user-defined predicate with arity
n, the negated version of p must be named n p. If the solver does not find any clause defining
n p, it will use naf p, possibly printing the warning message using unsafe negation.

The control variable of a RIS term is an existentially quantified variable whose scope is the
RIS term itself—in other words, the control variable is local to the RIS term. In its current form,
however, {log} doesn’t check whether or not this variable is used outside the RIS term. It’s the
user’s responsibility to avoid such name clashes which may make {log} to produce unexpected
behaviors.

5.1.1 Parameters and the functional section

Now we are going to explain the meaning of the second argument of a RIS term and through it
we will present one more argument of RIS terms. Say you want to specify a function mapping
sets to their cardinalities provided they are greater than one. Then, you can use the following
RIS:
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CF = ris(S in D,[C],C > 1,[S,C],size(S,C))

In effect, CF is the set of ordered pairs of the form [S,C]where S belongs to D, C is the cardinality
of S and C is greater than one. Hence, CF is a function as is a set of ordered pairs where no
two pairs have the same first component. The following are two formulas that can be proved to
hold using {log}:

D = {{X},{Y,Z}} &
CF = ris(S in D,[C],C>1,[S,C],size(S,C)) & CF = {}.

[{1,2},N] in ris(S in D,[C],C>1,[S,C],size(S,C)).

yielding Z = Y and N = 2, respectively, as part of their computed answers.
Note that in CF the second argument is no longer the empty list but the list containing

variable C. This kind of variables are called parameters. Parameters are local to the RIS where
they appear4. The semantics of a parameter is an existentially quantified variable. Then, the
semantics of CF is given by the following intentional set:

{y : ∃ s(∃c(s ∈ D ∧ |s| = c ∧ c > 1 ∧ y = (s, c)))} (12)

The second argument of a RIS term is called the parameters list. In the parameters list you can
introduce as many parameters as you need. All of them have the same semantics.

In general, {log} may give wrong answers to formulas including RIS with parameters. As
an example, the following formula:

R = {[1,a],[1,b],[3,a],[2,c],[3,b]} & A = {1,2} &
ris(X in A,[Y],[X,Y] in R,[X,Y]) = {}.

is found to be satisfiable, whereas it is clearly not. In fact, the given RIS defines the domain
restriction of a binary relation R with respect to a set A, and with the given values for R and A it
represents the set S = {[2,c],[1,a],[1,b]}.

However, if parameters are used to get the ‘results’ of some predicates, then they are safe.
This is what we did with C in the first RIS at the beginning of this subsection, because we use it
to get the cardinality of S through the predicate size(S,C). In doing so we placed size(S,C)
in the fifth argument of the RIS term and not as part of the filter. By placing size(S,C) in the
fifth argument {log} can treat it in a different way than a regular filter predicate; had we placed
it as a regular filter constraint {log} might have given wrong answers.

The fifth argument of a RIS term is called the functional section. In the functional section
you can place a conjunction of constraints each of which captures its ‘result’ in a parameter
declared in the RIS. This means that only constraints that behave as functions can be placed in
the functional section. We call these constraints functional predicates. For example, assuming A
is a parameter, you cannot place size(A,N) in the functional section because for a given N there
are many sets whose cardinality is N. In other words, size behaves as a function only w.r.t. its
second argument. Along the same lines, if A and B are parameters, un(A,B,C) is not allowed in

4As with control variables, {log} doesn’t check whether or not the formula respects this restriction; hence, it’s the
user’s responsibility to avoid using parameters outside of RIS terms.
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the functional section because it depends on two parameters; if only A is a parameter, un(A,B,C)
is not allowed neither because for any given sets B and C there are many A for which un(A,B,C)
is true; but un(D,C,A) can be placed in the functional section because for any given sets D and
C there is only one A for which un(D,C,A) is true.

As can be seen, parameters and the functional section in a RIS behave as the let construct
(see Sect. 3.5). In fact we have the following:

ris(X in A,[vars],𝜙,p,𝜓) = ris(X in A,[],let([vars],𝜓,𝜙),p)

5.1.2 Parameters and control expressions

Some times we need parameters but we cannot express what we want with functional predicates.
If we persist in using parameters the formula becomes unsafe. However, {log} offers another
safe way that avoids many of those unsafe parameters.

In fact, some parameters can be avoided by using control expressions instead of a control
variable. A control expression is an expression of the following forms:

• Any nested closed list whose elements are all distinct variables (e.g., [X], [X,[Y],Z], etc.);

• [X|Y], where X and Y are different variables;

• {X/Y}, where X and Y are different variables.

In all cases the variables in the control expression are variables bound to the RIS.5 Then,
for example, the RIS in the formula with a wrong answer in the previous subsection can be
alternatively written without using parameters but using a control expression:

R = {[1,a],[1,b],[3,a],[2,c],[3,b]} & A = {1,2} &
ris([X,Y] in R,X in A) = {}.

where the RIS pattern is omitted as is expected to be the control expression. In this case, {log}
will correctly find that the formula is unsatisfiable.

As another example, if R is a set and we want the subset of R whose elements are ordered
pairs of integer numbers such that their first components are greater than or equal to the second
components, we can use the following RIS:

ris([X,Y] in R, X >= Y)

Observe that this set cannot be expressed with the set and relational operators of Sections 3 and
4 nor with functional predicates (because ≥ is not such a predicate).

As the above RIS do not introduce parameters, every formula including them will always
return the right answer (i.e., those formulas are safe because they lay inside the decision proce-
dure).

When control expressions are used in place of control variables, only the elements of the
domain of the RIS that unify with the control expression are processed (all the others are simply
ignored). For example, consider the RIS above where R is instantiated with {1,[0,3],[5,1]}.
Then, we have:

5The variables in control expressions are subjected to the same locality restriction of control variables and
parameters.



26

{[5,1]} = ris([X,Y] in {1,[0,3],[5,1]}, X >= Y)

because 1 is ignored as it does not unify with [X,Y]; [0,3] does not pass the filter; and [5,1] is
the only element of the domain of the RIS which unifies with the control expression and passes
the filter.

5.1.3 Encoding sets of structured elements

Control expressions can be used to extract elements with particular structures. The above is
such an example but elements with more complex structure can also be considered. In effect,
the structure of an element can be given by an appropriate nesting of functors. For example,
p(X,q(X,Y,Z)), where p and q are functors and X, Y and Z are variables. Such an element can
be encoded as follows: [p,[X,[q,[X,Y,Z]]]]. Then, if we want the subset of Awhose elements
are of the form p(X,q(X,Y,Z))we can use the following RIS:

ris([P,[X1,[Q,[X2,Y,Z]]]] in A,P = p & Q = q & X1 = X2)

where X1 and X2 are introduced because all the variables in a control expression must be
different from each other.

Furthermore, if we also want elements of the form p(E)we can use union:
un(ris([P,[X1,[Q,[X2,Y,Z]]]] in A,P = p & Q = q & X1 = X2),
ris([P,[E]] in A,P = p),
Result)

5.1.4 Safe patterns

As we have said at the beginning of this section, a pattern in a RIS term is a {log} term. However,
for a formula to be safe the patterns involved in the RIS participating in the formula must verify
a couple of conditions. In order to precisely state those conditions, we need the following
definitions.

Definition 5.1 (Bĳective pattern) Let {x : D | F(x) •P(x)} be a RIS, then its pattern is bĳective if
P : {x : x ∈ D ∧ F(x)}→ Y is a bĳective function, where Y is the set of images of P.

Definition 5.2 (Co-injective patterns) Two patterns, P and Q, are said to be co-injective if for any x
and y, if P(x) = Q(y) then x = y.

Then, for a formula to be safe all its patterns must be bĳective and pairwise co-injective.
Checking whether a formula verifies these conditions is, in general, not decidable. Hence,

{log} does not perform this check: checking whether the patterns of the RIS included in
input formulas are bĳective and pairwise co-injective or not is left to the user’s responsibility.
Fortunately, at least the following patterns always verify Definitions 5.1 and 5.2:

• terms of the form [X,f(...,X,...)], where X is the control expression and f is any
function;

• terms of the form [f(...,X,...),X], where X is the control expression and f is any
function;
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• the formula contains patterns of either form but not a mix of them.
As an example, executing the following goal:
{log}=> [4,N] in ris(X in D,[Y],X>=0,[X,Y],Y is X*X).

where the RIS contains a safe pattern, correctly answers
N = 16,
D = {4/_N1}
Constraint: 4 nin _N1, set(_N1)

On the other hand, executing the goal:
{log}=> ris([X,Y] in R,true,X) = {1}.

where the RIS pattern is not a safe one, will yield the following answer:
R = {[1,_N2]/_N1}
Constraint: ris([X,Y]in N1,[],true,X,true) = {}

stating that R cannot contain more than one pair whose first component is 1, which is incorrect.
Observe that most of the RIS that you will need can be defined with these patterns. So, in

general, you will not need to check whether your patterns verify Definitions 5.1 and 5.2.
Furthermore, if your formula is not going to end up resolving a constraint such as:
ris(X in D, G(X), Q(X)) = {t / ris(Y in D, F(Y), P(Y))}

where D is a variable and t stands for any {log} term, then the condition on the pairwise co-
injectivity of the patterns can be dropped. Note that D is the same variable used as RIS domain
at both sides of the equation.

5.1.5 Enumerating the elements of a RIS

Given an equation of the form S = ris(X in D,[],F(X),P(X)), where S and D are variables,
the RIS is not evaluated and thus remains as it is. However, when the domain is a ground set
(i.e., {}, or {t1,...,tn} with t1,...,tn ground), or a ground interval, then it is possible to
enumerate the elements of the RIS by means of the is operator, which forces the evaluation of
its term. For example, when the following is executed:

Sqrs is ris(X in int(1,100),[Y],true,[X,Y],Y is X*X)

{log} returns:
Sqrs = {[1,1],[2,4],...,[100,10000]}

Note, however, that if Y is X*X is written as part of the filter:
Sqrs is ris(X in int(1,100),[Y],Y is X*X,[X,Y])

{log} first prints a series of warning messages and only after them it prints the correct answer.
This means that the answer is not fully reliable (although in this case is correct).

If parameter Y is eliminated by introducing a control expression:
Sqrs is ris([X,Y] in D,[], X in int(1,100),[X,Y],Y is X*X)

the domain is a variable and thus {log} simply returns:
Sqrs = ris([X,Y] in D,[], X in int(1,100),[X,Y],Y is X*X)



28

5.1.6 Automated proofs

As with extensional sets and binary relations, {log} can be used as an automated theorem prover
for formulas involving RIS provided the formula is safe. Remember that a formula is safe if all RIS
terms possibly occurring in it contain only safe patterns (i.e., they are bĳective and pairwise
co-injective) and, if they contain parameters, then they are safe parameters (i.e., they are used
only as the result of functional predicates). For instance, {log} can prove that:

inters(A,B,C) & D = ris(X in A,X in B) & C neq D

is false which means that

A∩B = {x | x ∈ A ∧ x ∈ B}

is a theorem.

5.2 General intensional set terms

{log} provides also another way to express intensional sets, by means of general intensional set
(GIS) terms.

GIS terms are terms of one of the following forms:
{X : (G)}
{X : exists(V,G)}
{X : exists([V1 , . . . ,Vn],G)}

where: X is a variable; s is a term representing either a set or an interval int(a,b); V, Vi are
variables “local” to G; and G is an arbitrary {log} formula containing at least one occurrence of
X.

Intuitively, the intensional set term denotes the set of all instances of X satisfying the formula
G.

The following are two simple examples using GIS.
• powerset(S,P) is true if P is the powerset of set S.

powerset(S,P) :-
P = {X: (subset(X,S))}.

Sample goal:

{log}=> powerset({a,b},P).
P = {{},{a},{a,b},{b}}}.

• cross product(A,B,CP) is true if CP is the Cartesian product of sets A and B.

cross_product(A,B,CP) :-
CP = {P : exists([X,Y],P = [X,Y] & X in A & Y in B)}.

Sample goal:

{log}=> cross_product({a,b},{1,2},CP).
CP = {[a,1],[a,2],[b,1],[b,2]}.



29

GIS can occur everywhere ordinary set terms are allowed. Moreover, they can be nested at
any depth, i.e., the formula of a GIS term can contain other GIS terms.

Note that the control expression of a GIS can be only a single variable, whereas control
expressions of RIS can be also compound terms. Apart from this, GIS are more general than
RIS. Hence, from a logical point of view, RIS can be always replaced by the equivalent GIS.
From an operational point of view, however, their behavior can be quite different.

In fact, internally, predicates containing RIS terms are dealt with as constraints, while
predicates containing GIS terms are always replaced by new predicates whose definition (given
in terms of automatically generated {log} clauses) implements the set grouping mechanism
which allows to collect into an extensional set all values satisfying a given intensional definition.

As a consequence, when the intensional set term denotes an infinite set or even an un-
bounded set, the use of GIS may lead to possibly incorrect computations. For instance, given
the goal of Section 5.1.6 written using GIS instead of RIS, i.e.:

inters(A,B,C) & D = {X : (X in A & X in B)} & C neq D

{log} is not able to find it is unsatisfiable (actually it generates wrong solutions).

6 Quantifiers

{log} provides a form of restricted quantifiers (RQ) where the quantified variable ranges over a
{log} set. There are Restricted Universal Quantifiers (RUQ) and Restricted Existential Quantifiers
(REQ). RUQ are supported through predicates foreach and forall, while REQ are supported
through predicate exists. Furthermore, the current version of {log} provides also a form of
general existential quantifiers.

6.1 foreach and exists

The main way to express RUQ and REQ in {log} is by means of the foreach/2, foreach/4,
exists/2 and exists/4 predicates:

• foreach(X in A,F)
where X can be either a variable or a control expression (cf. Section 5.1.2), A is any {log} set
admitted as RIS domain, and F is any {log} formula. The semantics of such a constraint is
the expected:

∀x : x ∈ A ⇒ F

That is, F is a formula true for every element of A.
• foreach(X in A,[params],F,functional predicates)

which behaves as foreach/2while allowing the introduction of parameters and functional
predicates (cf. Section 5.1). Note that quantified variables of a RQ are meant to be local to
the RQ.6 Same considerations as with RIS apply to the use of the let construct in RQ (see
at the end of Sect. 5.1.1).

6In its current form {log} doesn’t check whether or not local variables are used outside the RQ. It’s the user’s
responsibility to avoid such name clashes which may make {log} to produce unexpected behaviors.
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• exists(X in A,F)
where arguments are as in foreach/2. The semantics of such a constraint is the expected:

∃x : x ∈ A ∧ F

• exists(X in A,[params],F,functional predicates)
which behaves as exists/2while allowing the introduction of parameters and functional
predicates (cf. Section 5.1).

{log} provides also the negated versions of foreach/2, foreach/4, exists/2 and exists/4,
namelynforeachandnexists. In particular, note that the logical meaning ofnforeach(X in A,[],
F,true) is ¬ ∀x : x ∈ A ⇒ F, i.e., ∃x : x ∈ A ∧ ¬ F. Actually, exists/2 is implemented in terms
of nforeach as follows:

exists(X in A, F) :- nforeach(X in F,[],neg(F))

Note that, then, exists may not work well in all cases due to the presence of neg. The same
holds for exists/4.

The following are two simple examples where RUQ are used to iterate over all elements of
the given set:

• print elements(S) prints all elements of the set S, one in each line.

print_elements(S) :_
foreach(X in S, write(X) & nl).

• all_pair(S) is true if all elements of S are pairs (i.e., all_pair(S)⇔ rel(S)).
all_pair(S) :-

foreach(X in S,[X1,X2],X = [X1,X2],true).

Sample goal:

{log}=> all_pair({[peter,ann],[tom,mary],[john,ann]}).
true.

RQ can occur everywhere ordinary predicates are allowed. In particular, RUQ and REQ can
be nested at any depth, i.e., the formula of a RUQ can be a RUQ itself and so on; and the formula
of a REQ can be a REQ itself and so on. Decidability of formulas including RQ is described
below. The following is a safe formula showing a nested RUQ:

foreach(X in S1,foreach(Y in S2, X neq Y))

which can be used to state that S1 and S2 are disjoint sets (i.e., disj(S1,S2) is true). As an
example, executing the goal:

{log}=> S1={a,b} & S2={Z} &
foreach(X in S1,foreach(Y in S2, X neq Y)).

returns the constraint:
Z neq a, Z neq b
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while executing:
{log}=> S1={a/R} & S2={c} &

foreach(X in S1,foreach(Y in S2, X neq Y)).

returns the constraint:
foreach(X in R,foreach(Y in {c},[],X neq Y,true)), set(R)

In order to simplify the introduction of nested RQ, {log} allows to write a list of constraints
of the form X in A in foreach and exists. For example:

foreach([X1 in A1,...,Xn in An],...)

For instance, the nested RUQ shown above stating that S1 and S2 are disjoint sets can be written
more compactly as follows:

foreach([X in S1,Y in S2],X neq Y)

Decidability of formulas including RQ. Let {.../A} be the domain of a RQ where A is a
variable. In this case we will say that A is the domain variable of the RQ7. The innermost formula
of a RQ is called its quantifier-free formula. For instance, X neq Y is the quantifier-free formula
of the nested RUQ encoding disj shown above. Formulas including foreach and exists are
safe provided at least one of the following conditions is met (for technical details see [14]):

1. The formula contains only exists and the quantifier-free formula belongs to a decidable
fragment.

2. The formula contains only foreach, the quantifier-free formula belongs to a decidable
fragment, and none of the domain variables are used in the quantifier-free formula.

3. The formula contains foreach and exists but all the foreach occur after any exists.
Here ‘after’ means that the only nested RQ are of the form:

exists([X1 in A1,...,Xn in An],
foreach([Y1 in B1,...,Ym in Bm], formula)

)

where formula is a quantifier-free formula fitting in a decidable fragment, and the nested
foreach verifies 2.

4. The formula contains foreach and exists but doesn’t belong to the above class (i.e., some
exists occur after some foreach). In this case the condition for decidability is as follows:
the quantifier-free formula must belong to a decidable fragment, no exists occurring after
a foreach share the same domain variable, and no domain variable of a foreach is used
in the quantifier-free formula. For instance, the following two formulas do not verify the
above condition:

foreach(X in {W / A}, exists(Y in {V / A}, formula))

foreach(X in {H / A}, exists(Y in B, formula_1)) &
foreach(Z in B, exists(W in {Q / A},formula_2))

7Clearly, if the domain of a RQ is just a variable then this is the domain variable.
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Note that in the first case there’s an exists after a foreach sharing variable A. The second
case is more complex because is harder to see that there’s an exists after a foreach
sharing variable A as they are in different RUQ. However these two RUQ are connected
through domain variable B—see [14] from Example 5 to Theorem 3.

If these conditions aren’t met then {log} will most likely run forever when is called on such
a formula but it may not, depending on the quantifier-free formula inside the RQ.

6.2 forall

{log} provides also another way to express RUQ by means of the forall predicates:
forall(X in A, F)
forall(X in A,exists(V,F))
forall(X in A,exists([V 1,. . . ,V n],F)

where X is a variable, A is any {log} set admitted as RIS domain, F is an arbitrary {log} formula,
containing at least one occurrence of X, and V, V i are variables “local” to F.

The meaning of
forall(X in A,exists([V 1,...,V n],F)

is the same as
foreach(X in A,[V 1,...,V n],F,true)

Hence, from a logical point of view, forall can be always be replaced by the equivalent foreach
predicate. In this respect, forall is motivated mainly for compatibility with previous versions
of {log}.

From an operational point of view, however, forall behaves differently from foreach
whenever the set over which the control variable ranges is a variable or a set containing a
variable set part. As an example, executing the goal:

{log}=> foreach(X in R,X in {a,b}).

simply returns the constraint:
subset(R,ris(X in R,[],X in S,X,true)), set(R), set(S)

(note that this constraint is trivially true for R = {}). On the other hand, executing the goal:
{log}=> forall(X in R,X in {a,b}).

explicitly generates all possible solutions:
R = {}
R = {a}
R = {a,b}
R = {b}

Actually, the forall predicates are not dealt with as constraints. Executing forall(X in A , F)
always starts a computation that iteratively executes the goal F over all elements of the set A.
If A and F are not enough instantiated this can lead to an infinite computation. For instance,
executing the goal:
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{log}=> forall(X in R,X in {a/S}) & a nin R.

after generating the first solution R = {}), will go into an infinite loop trying to add more and
more elements to Rwhich anyway contains a.

6.3 General existential quantifiers

{log}provides also a simple form of general existential quantifiers, where the quantified variable
is not required to range over a specified domain:

exists(X,F)

where X is a (single) variable and F is any {log} formula.
This form of quantification can be used, for instance, to make explicit the otherwise implicit

existential quantification of fresh variables in clause bodies, as well as of the so called parameters
of RIS and RQ. As an example, predicates singleton_set and not_singleton_set defined in
Sect. 3.5 can be equivalently defined as:

singleton_set(X) :- exists(Y,X = {Y}).
not_singleton_set(X) :- neg(exists(Y,X = {Y})).

In this case, by issuing the goal
{log}=> not_singleton_set({1}).

{log} recognizes it is using a form of negation that it can’t handle, and so it tries to use naf
in place of neg, printing the warning message: using unsafe negation. This means that the
answer might be incorrect—although in this particular example it is correct.

As another example, the following formula
D = {[a,b],[1,1],[1,2]} & S is ris(Z in D,[X,Y],Z = [X,Y] & X neq Y).

using a RIS with two parameters X and Y, can be equivalently written without parameters but
using nested existential quantifiers:

D = {[a,b],[1,1],[1,2]} &
S is ris(Z in D,[],exists(X,exists(Y,Z = [X,Y] & X neq Y))).

In both cases, the use of the existential variables X and Y inside the RIS is unsafe. In the second
case, however, {log} tries to use naf in place of neg, printing the warning message concerning
unsafe negation. Again, in this specific case, the use of naf allows the solver to obtain a correct
answer (namely, S = {[1,2],[a,b]}).

It is worth noting that by using restricted existential quantifiers instead of the general ones
we always get a reliable answer. For instance, the definition of not_singleton_set can be easily
generalized by allowing the domain of Y to be an argument of the predicate, i.e.,

not_singleton_set(X,D) :- neg(exists(Y in D,X = {Y})).

In this case, even if both X and D are left unspecified, we still get a correct answer:
{log}=> not_singleton_set(S,R).

true
Constraint: set(R), foreach(_X in R,neg S={_X})
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Operator {log} Meaning
simple equality n is e1 n = e1
less or equal e1 =< e2 e1 ≤ e2
less e1 < e2 e1 < e2
greater or equal e1 >= e2 e1 ≥ e2
greater e1 > e2 e1 > e2
equal e1 =:= e2 e1 = e2
not equal e1 =\= e2 e1 ≠ e2

Table 6: Comparison arithmetic operators available in {log}

Function {log} Meaning
addition e1 + e1 e1 + e1
substraction e1 - e1 e1 − e2
product e1 * e1 e1 × e2
division e1 / e1 e1/e2
integer division e1 div e1 e1 div e2
integer module/remainder e1 mod e2 e1 mod e2

Table 7: Arithmetic functions available in {log}

7 Solving formulas including integer numbers

{log} deals with arithmetic expressions through a number of predefined predicates. The com-
parison arithmetic operators available in {log} are shown in Table 6. In the table, e1 and e2
are arithmetic expressions, and n is a either a variable or a numeric constant. An arithmetic
expression is either a variable or a numeric constant or an arithmetic function (see Table 7)
applied to its arguments, which are in turn arithmetic expressions. Numbers can be either
integer or floating-point numbers.

For example, the following arithmetic formulas are solved as shown:

{log}=> X is 3*5.
X = 15

{log}=> 1.5 + 1 > 0.7.
yes

As Prolog, {log} does not evaluate arithmetic expressions unless they occur as parameters
in one of the predicates listed in Table 6. As an example, given the formula:

{log}=> 2 + 3 in {5}.

{log} answers no because the expression 2 + 3 is left unevaluated and 2 + 3 does not belong
to the set {5}. Conversely, using the is predicate, the formula:

{log}=> X is 2 + 3 & X in {5}.
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turns out to be satisfiable and the answer will be X = 5. In fact, the is predicate forces {log} to
evaluate the expression at the right-hand side as soon as possible.

If the expression e_i in the predicates of Table 6 is a floating-point expression, then all
variables possibly occurring in e_i must have a constant value when they are evaluated, as in
Prolog. Otherwise, a problem in the arithmetic expression is detected and {log} answers no.
Arithmetic predicates containing real numbers are not dealt as constraints, but exactly as in
Prolog. For example:

{log}=> 1.5 + X > 0.7 & X is 2*3.0.
Problem in arithmetic expression
no

while

{log}=> X is 2*3.0 & 1.5 + X > 0.7.
X = 6.0

yields the correct answer.
Conversely, if e_i is an integer expression, then it can contain uninitialized variables. As an

example:

{log}=> 34 is X + 1.
X = 33

In fact, predefined arithmetic predicates over integer expressions are dealt with by a con-
straint solver. Specifically, one can use either a constraint solver over finite domains (namely,
CLP(FD)) or a constraint solver over rationals (namely, CLP(Q)). By default, {log} starts solving
arithmetic predicates by calling CLP(Q). Users can change this by issuing int_solver(clpfd)
and can reset the default with int_solver(clpq).

Both solvers have their advantages and disadvantages. We briefly analyze them in the next
sections. See Section 7.3 for a few considerations on which solver should be used.

7.1 CLP(FD)

The CLP(FD) solver is incomplete. That is, given a goal G, if the answer is no, then G is surely
unsatisfiable; otherwise, it is not guaranteed, in general, that G is satisfiable. For example:

{log}=> 34 > X + 1.
***WARNING***: non-finite domain
true
Constraint: X in int(inf,32)

int(inf,32) represents the integer interval (−∞,32] (see next subsection). The warning
message means that the answer might be incorrect—although in this particular example it is
correct.

As another example:
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Operator {log} Meaning
integer integer(t) t is an integer number
integer ninteger(t) t is not an integer number

Table 8: integer and ninteger constraints

{log}=> X + 1 > Y & X + 1 < Y.
***WARNING***: non-finite domain
true
Constraint: integer(X), integer(Y)

This goal is clearly unsatisfiable, but {log} (actually the underlying CLP(FD) solver) is not able
to detect it. integer(X) is a {log} constraint that is true if and only if X is an integer number.
There is also its negated version ninteger (see Table 8).

The solver becomes complete (i.e., a decision procedure) if we provide a finite domain for
each integer variable which occur in the formula to be checked.

7.1.1 Finite domains

Domains for integer variables are specified through integer intervals. In mathematics an integer
interval is noted [m,n] and represents the set {i ∈ Z | m ≤ i ≤ n}. In {log} intervals are noted as
int(m,n), where m and n can be, in general, either integer constants or variables and represent
the same than in mathematics (see Section 9). Finite domains are specified through ground
intervals, i.e., intervals with constant limits.

Finite domains are associated to integer variables through membership constraints. The
formula:

X in int(1,10)

states that the domain of the variable X is the interval [1,10].
The last two goals above, give the correct answers if we provide suitable domains for the

integer variables X and Y.

{log}=> 34 > X + 1 & X in int(1,100).
X = 1
...
Another solution? (y/n)
X = 32
Another solution? (y/n)
no

{log}=> X + 1 > Y & X + 1 < Y &

X in int(1,10) & Y in int(1,20).

no

(13)
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7.1.2 Labeling

{log}, by default, always performs labeling at the end of the computation for all the integer
variables which have a finite domain associated with them in the resulting final formula (pro-
vided CLP(FD) is the active integer solver). Labeling a variable X with domain D means
non-deterministically assigning to X one by one all possible values in D. After each value has
been assigned, then the whole constraint is analyzed again to check its satisfiability.

If one wants to suppress the default activation of labeling one can give the goal:
{log}=> nolabel.

If we, successively, give the goal
{log}=> 34 > X + 1 & X in int(1,100).

then the answer now will be
true
Constraint: X in int(1,32)

instead of generating all possible values for X as in the case when labeling is active.
When global labeling is deactivated we can nevertheless perform labeling on a single variable

by using the built-in predicate labeling(X).
Global labeling can be reactivated at any moment by issuing the goal:
{log}=> label.

The domain of an integer variable can be obtained also as the result of solving some arith-
metic constraint on this variable. For example, the goal:

{log}=> 34 > X + 1 & X >= 1 & X =< 100.

will produce the same result as the goal 34 > X + 1 & X in int(1,100) shown above.
Note that labeling is performed only for variables which have a bounded domain associated

with them. For example,
{log}=> 34 > X + 1 & X =< 100.
***WARNING***: non-finite domain
true
Constraint: X in int(inf,32)

where it is evident that no labeling has been performed.
Observe that in goal (13) it is enough to specify the domain for one of the two variables; for

example:
X+1 > Y & X+1 < Y & X in int(1,10).

will produce the same result as above.
Finally note that the predicate X in {1,2,3} is logically equivalent to X in int(1,3), but

its processing by the {log}’s solver is quite different. Actually, X in {1,2,3} is operationally
equivalent to

X in int(1,3) & labeling(X).

Thus, X in {1,2,3} is not used to associate a domain to the variable X; rather it is used to
nondeterministically assign to X each value from a set of possible values.
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7.2 CLP(Q)

The CLP(Q) solver is complete for linear arithmetic (be it real, rational or integer). In other words,
it can give the right answer whenever the formula is linear, i.e., multiplication is restricted to
expressions of the form x ∗y where either x or y are constants, and division and remainder are
restricted to constants.

{log} uses CLP(Q) restricted to integer solutions. Thus, for instance, the goal:

{log}=> X + 1 > Y & X + 1 < Y.

which has solutions over the rational numbers, is found to be unsatisfiable over the integers;
hence, {log} answers no.

The CLP(Q) solver can be activated at any time by issuing int_solver(clpq).
When CLP(Q) is the active integer solver, {log} does not perform automatic labeling as

with CLP(FD). You can nevertheless perform labeling on a single variable by using the built-in
predicate labeling. If X is constrained to range over a ground interval, then labeling(X)
non-deterministically assign to X one by one all possible values in the interval; otherwise, i.e.,
the domain of X is unbounded, labeling(X) does nothing. For example, executing the goal

{log}=> 34 > X + 1 & X >= 1 & X =< 100.

will produce the answer

true
Constraint: 34>X+1, X>=1, X=<100, integer(X), ...

meaning that the input formula is satisfiable.8 If we conjoin labeling(X) to the input formula,
then the answer will be:

X = 1
...
Another solution? (y/n)
X = 32
Another solution? (y/n)
no

i.e., the same result as with CLP(FD) using the default labeling.

div and mod in CLP(Q). Since div and mod are not available over CLP(Q), one can use Euclid’s
division lemma as a way to compute them. Then, say that we want to test a number for parity:

0 = x mod 2

In {log} over CLP(Q) the correct way is to find the quotient of x/2:

{log}=> X is 2*Q.

where Q is a new variable. As can be seen, this is a linear constraint and so CLP(Q) can always
return the right answer.

8The constraints not shown in the computed answer are (negligible) integer constraints over fresh internal
variables.
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How {log} uses CLP(Q). {log} uses CLP(Q)’s bb inf/4 predicate to determine whether a
conjunction of linear integer constraints is satisfiable over the integers. See the CLP(Q) docu-
mentation9 for further details.

Non-linear expressions in CLP(Q). If the formula passed to CLP(Q) contains non-linear
expressions the returned answer is unreliable. {log} alerts the user with a proper warning
message. For example:

{log}=> A is X*Y & B is Y*X & A neq B.

***WARNING***: non-linear expression over CLP(Q); possible unreliable answer

true
Constraint: A is X*Y, B is Y*X, A neq B

7.3 Which integer solver should be used?

As we have said, each integer solver has its own advantages and disadvantages. Hence, you
should use CLP(FD) or CLP(Q) depending on how you are using {log}. In general, if you
are using {log} as a programming language, then CLP(FD) should be your first choice. In
this situation the solver mode should be preferred over the prover mode—cf. Section 11.
Conversely, if you are using {log} as an automated theorem prover, then CLP(Q) is definitely
the integer solver to be used—because it is complete for linear arithmetic thus turningno answers
into real unsatisfiability proofs if linear arithmetic constraints are in the formula. Recall that if
you are using {log} as an automated theorem prover then you should use it in provermode.

8 Cardinality constraints

size is a set predicate that represents the cardinality of a set. size, and its negated version
nsize, are defined in Table 9.

The first argument of both predicates can be either a variable or a set term, including integer
intervals and CP terms, but not RIS terms. The second argument can be either a variable or an
integer constant. As an example, given the following goal:

{log}=> size({1/R},M).

we get as first answer:

true
Constraint: 1 nin R, size(R,_N1), _N1>=0, M>=1, _N1 is M-1,

set(R)

If the second argument of size is a constant k and the first is a variable then the computed
answer depends on the operation mode of the solver (cf. Sect. 11). In solver mode the most
general set of k elements is explicitly shown. As an example, the answer to the following goal:

9https://www.swi-prolog.org/pldoc/doc_for?object=bb_inf/4

https://www.swi-prolog.org/pldoc/doc_for?object=bb_inf/4
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Operator {log} Meaning
set cardinality size(A,N) |A| = N
not set cardinality nsize(A,N) |A| ≠ N

Table 9: The set cardinality operators

{log}=> size(A,3).

is
A = {X,Y,Z}
Constraint: X neq Y, X neq Z, Y neq Z

because {X,Y,Z}, with X, Y and Z variables, is the most general set of three elements provided
they hold different values—and from here the constraint.

Conversely, if we are in provermode, then the solver may check the satisfiability of the input
formula without explicitly generating sets involved in size constraints of the form size(A,k).
For example, given the following goal:

{log}=> size(A,10) & subset({1,2,3},A).

we get as first answer:

A = {1,2,3/_N1}
Constraint: 1 nin _N1, size(_N1,7), 2 nin _N1, 3 nin _N1,

set(_N1)

whereas in solver mode, A would be bound to {1,2,3, N7, N6, N5, N4, N3, N2, N1},
along with the necessary constraints to ensure that elements in the set are all distinct from each
other.10

Although the second argument of a size constraint can only be an integer constant or
variable, users can link it to more complex (linear) expressions by means of the is or the
ordering operators, as shown in the following examples:

{log}=> size(S,N) & N > 1.
{log}=> size({1/R},N) &

N is 2*X + 3*Y + 4 & X > -6 & 2*Y + 5 < 10.

8.1 Decidable formulas involving cardinality constraints

{log} provides a decision procedure for formulas involving size constraints provided the fol-
lowing conditions are met:

1. The only constraints in the formula are those of Tables 1, 6 and 8.
That is, no relational constraints are allowed in the formula.

10As a more practical solution, in the current version, if k is less or equal to a given threshold (now fixed at 6), then
solving the constraint size(A,k) causes the set A to be anyway generated, disregarding the solver execution mode.
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2. The first argument of any size constraint in the formula is either the empty set, a variable
or an extensional set. This means that size will, in general, not work well when the first
argument is a CP term, or a RIS term, or when the set part of the first argument is one of
these.

3. All integer constraints in the formula are linear and CLP(Q) is the active integer solver.

For example, {log} is able to detect that the last two formulas given above are satisfiable.
Similarly, {log} can detect that the formula:

{log}=> subset(A,B) & size(A,CA) & size(B,CB) & CA = CB &
A neq B.

is unsatisfiable.

8.2 The solved form of formulas involving size constraints

Some solutions returned by {log} when the formula involves size constraints might be too
abstract. For example the answer to the following formula:

{log}=> size(A,M) & 1 =< M & M =< 2 & size(B,N) & 5 =< N &
subset(C,B) & size(C,K) & 7 =< K.

is
true
Constraint: size(A,M), M>=0, 1=<M, M=<2, size(B,N), N>=0,

5=<N, subset(C,B), size(C,K), K>=0, 7=<K

that is, the formula itself. This means the formula is satisfiable and that all the possible solutions
can be obtained by fixing values for the variables as long as all the constraints are met. However,
this answer does not point out an evident concrete solution for the formula.

In general, when the size constraint is present in the answer, substituting all set variables by
the empty set can lead to unsound solutions. Manually computing a concrete solution from such
an answer can be cumbersome and error prone. Therefore, for these cases, {log} provides the
fix_size and nofix_size built-in predicates. The latter is active by default. When fix_size
is issued, the answer to the above goal is a more concrete solution:

A = {_N8},
M = 1,
B = {_N7,_N6,_N5,_N4,_N3,_N2,_N1},
N = 7,
C = {_N7,_N6,_N5,_N4,_N3,_N2,_N1},
K = 7
Constraint: _N7 neq _N6, _N7 neq _N5, _N7 neq _N4, _N7 neq _N3,
_N7 neq _N2, _N7 neq _N1, _N6 neq _N5, _N6 neq _N4, _N6 neq _N3,
_N6 neq _N2, _N6 neq _N1, _N5 neq _N4, _N5 neq _N3, _N5 neq _N2,
_N5 neq _N1, _N4 neq _N3, _N4 neq _N2, _N4 neq _N1, _N3 neq _N2,
_N3 neq _N1, _N2 neq _N1
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groundsol (Section 3.2) produces even more concrete solutions also for formulas involving
cardinality constraints. Recall to reactivate nofix_size if you are expecting abstract solutions.

If one wants simply to know which are the smallest cardinalities of the set variables occurring
in size constraints as to satisfy the formula, without explicitly computing the relevant sets,
then it is possible to use the show_min and noshow_min built-in predicates. As an example, by
executing:

{log}=> show_min.
{log}=> size(A,M) & 1 =< M & M =< 2 & size(B,N) & 5 =< N &

subset(C,B) & size(C,K) & 7 =< K.

we get

true
Constraint: M=1, N=7, K=7,

size(A,M), M>=0, 1=<M, M=<2, size(B,N), N>=0, 5=<N,
subset(C,B), size(C,K), K>=0, 7=<K, set(A), set(B),
set(C)

where M=1, N=7, K=7 represent the smallest cardinalities of sets A, B and C that make the input
formula true.

9 Finite integer intervals

{log} allows to represent finite integer intervals and to deal with them as sets of integer numbers.11

The integer interval [m,n] is written in {log} as int(m,n); m and n, called limits, can be either
variables or integer constants. If both interval limits are constants we say that int(m,n) is a
ground interval, while if one of the limits is a variable it is a variable interval. Note that limits of
variable intervals can participate in arithmetic constraints. For example:

{log}=> un({X,Y},{V,W},int(M,5)) & M is X - Y.
X = 4,
Y = 2,
V = 5,
W = 3,
M = 2

An interval int(m,n)where m > n denotes the empty set.

9.1 Decidable formulas involving integer intervals

If the input formula fulfills the following conditions:
• only operators of Tables 1 and 9 are involved;
• only linear integer arithmetic is involved;
• CLP(Q) is the active integer solver,

11From now on, we will say integer interval or just interval meaning finite integer intervals.
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then {log} will always compute the right answer even when set arguments are terms of the form
int(m,n) (i.e., {log} provides a decision procedure for those formulas).

In this case:

• extensional sets and intervals can be freely combined, e.g. un({X,Y},{V,W},int(M,5));

• intervals can also occur as the set part of extensional sets, e.g., {-1/int(1,N)}.

When operators other than those in Tables 1 and 9 are involved or when the formula contains
non-linear integer arithmetic, the answer returned by {log} is unreliable (i.e., {log} is no longer
guaranteed to provide a decision procedure for those formulas). It can be made reliable if the
limits of all the intervals in the formula are constants (i.e., only ground intervals are involved).
If this is the case, intervals can be safely used as the domain of a RIS, the domain of a RUQ and
as arguments of the operators of Tables 3 and 5. Intervals cannot be the arguments of CP terms.

9.2 Defining set operators using intervals

Some powerful set operators can be defined using (variable) intervals and {log} can automati-
cally reason about them within the decidable fragment. These are gathered in the {log} library
setloglibIntervals.slog. Here we comment on one of them—see Sect. 10 for more.

Integer intervals can be used to define a predicate stating when an element of a set is the
successor of another element of the same set.

ssucc(A,X,Y) :-
X < Y &
A = {X,Y/A1} & X nin A1 & Y nin A1 &
un(Inf,Sup,A1) & disj(Inf,Sup) &
M is X - 1 & subset(Inf,int(_,M)) &
N is Y + 1 & subset(Sup,int(N,_)).

In this way, we can get the successor of a given element in a given set:

{log}=> ssucc({2,5,-1,9,0},5,M).
M = 9
Constraint: _N1=<2, _N1=< -1, _N1=<0

But also the predecessor:

{log}=> ssucc({2,5,-1,9,0},M,0). [the second argument is a variable]
M = -1
Constraint: 2=<_N1, 5=<_N1, 9=<_N1

And we can prove properties true of ssucc:

{log}=> ssucc(S,X,Y) & Z in S & X < Z & Z < Y.
no

Note that some of the predicates listed in setloglibIntervals.slog can also be encoded
with RIS and RUQ (cf. Sections 5.1 and 6). Which encoding is the best cannot be told because
it depends on the context where they are used.
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10 Aggregation functions

{log} provides some aggregation or aggregate functions12 within its decision procedures, and
some others can be defined outside of them.

10.1 Minimum and maximum of a set

{log} provides predicates smin(S,min) and smax(S,max) where S is a set and min and max can
be integer constants or variables. These predicates are true when min (max) is the minimum
(maximum) of set S. Both predicates are within the decidable fragments implemented in {log}
as long as the second argument participates only in linear integer arithmetic (and the active
integer solver is CLP(Q)).

The minimum of a set can be defined in terms of RUQ or in terms of integer intervals—same
considerations apply to the maximum of a set. smin is defined in terms of RUQ.

smin(S,M) :- M in S & foreach(X in S, M =< X).

Then, we can compute the minimum of a given set:

{log}=> smin({2,5,-1,9,0},M).
M = -1
Constraint: 2=<_N1, 5=<_N1, -1=<_N1, 9=<_N1, 0=<_N1

{log}=> smin({2,X,-1,9,0},M). [one element is a variable]
M = X
Constraint: X=<2, X=< -1, X=<9, X=<0

Another solution? (y/n)y
M = -1
Constraint: -1=<X

And we can prove properties true of smin as long as the formula remains in the decidable
fragment:

{log}=> smin(S,M) & X in S & X < M.
no

The library setloglibIntervals.slog includes a predicate that computes the minimum of
a set, called setmin, defined in terms of intervals:

setmin(S,M) :- M in S & subset(S,int(M,_)).

10.2 Sum of a set

The predicate sum(Set,Sum) computes the sum of a set. The first argument of sum can be either
a variable or an extensional set or an integer interval with constant limits. The second argument
can be either a variable or an integer constant. When bound, the first argument must denote

12Wikipedia.org: Aggregate function

https://en.wikipedia.org/wiki/Aggregate_function
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either the empty set or a set of non-negative integer numbers. In particular, when applied to an
empty set it returns 0.

Note that both elements of an extensional set and its set part can be uninitialized variables.
For example, executing the goal13:

{log}=> sum({X1,X2},2) & labeling(X1)

we get the three solutions:

X1 = 0, X2 = 2
X1 = 2, X2 = 0
X1 = 2, X2 = 2

However, when both the first and the second arguments are variables occurring in some
other constraints in the input formula, the solver may be unable to determine the satisfiabil-
ity/unsatisfiability of the formula. For example, given the formula:

{log}=> sum(A,S1) & sum(A,S2) & S1 < S2.
true
Constraint: sum(A,S1), S1 >= 0, sum(A,S2), S2 >= 0, S2 > S1

the answer is clearly wrong.
In order to get the correct answer one should bound integer variables to ground intervals

of the form X in int(m,n) for some constants m and n, and force labeling for at least some of
them (remember that, if CLP(FD) is activated, then labeling is performed automatically at the
end of the computation). For example, {log} gives the correct answer in the following case:

{log}=> int_solver(clpfd).
{log}=> sum(A,S1) & sum(A,S2) & S1 < S2 & S1 in int(1,10) & S2 in int(1,10).
no

Hence, in the current version, {log} does not provide a decision procedure for formulas
involving sum. Removing this limitation is a goal for future releases. However, as a first step,
consider the following section.

10.3 Sum of an array

The contents of this section and its implementation in {log} are still experimental

Arrays can be defined by the following {log} formula:

arr(A,N) :- 0 < N & pfun(A) & dom(A,int(1,N)).

That is, an array A of length N is a function whose domain is the interval [1,N]. For example:

{log}=> arr({[1,5],[2,3],[3,8],[4,2]},4).
yes

13Here we assume CLP(Q) is the active integer solver; if CLP(FD) is active, labeling is unnecessary as is performed
automatically.
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but also:
{log}=> arr(A,4).
A = {[1,_N4],[2,_N3],[3,_N2],[4,_N1]}

The decidability of arrays in {log} has not been deeply studied, yet. However, as a rule of
thumb, it is possible to say that {log} formulas containing arr/2 belong to a decidable fragment
if the cardinality of arrays, and anything related to them, is never taken. For example, the
following is a formula laying outside that decidable fragment:

arr(A,N) & ran(A,R) & size(R,K) & K < N

because we are computing the cardinality of the range of array A. Taking the cardinality of some
set containing some of the elements of an array will be useful in some circumstances. However,
according to preliminary experiments, there are many non-trivial problems where taking the
cardinality of some set related to an array isn’t necessary. This implies that those problems
belong to the decidable fragment.

Summing the elements of an array is one of those problems. Assuming A is an array of
length at least K, the following predicate computes the sum of the first K elements of A.

arrsum(A,K,Sum) :-
arr(Tr,K) &
applyTo(A,1,X) &
Tr = {[1,X],[K,Sum] / Tr1} & [1,X] nin Tr1 & [K,S] nin Tr1 &
foreach(I in int(2,K),[I1,Y,Z,Si],
[I,Si] in Tr,
I1 is I - 1 & applyTo(Tr,I1,Z) & applyTo(A,I,Y) & Si is Y + Z

).

As an example:

{log}=> arrsum({[1,5],[2,3],[3,8],[4,2]},2,S).
S = 8

The sum is performed by computing the partial sums in each component of Tr. In effect,
the following is true of arrsum(A,K,Sum):

Tr(1) = A(1)
Tr(2) = Tr(1)+A(2)
Tr(3) = Tr(2)+A(3)
. . . . . . . . . . . . . . . . . . . . . . . .

Tr(k) = Tr(k−1)+A(k)

In a sense, Tr records the state trace of the standard imperative algorithm computing the sum
of an array. Consequently, arrsum/3 would be an abstract or logical representation of that
algorithm.

As can be seen, arrsum/3 never takes the cardinality of anything related to an array. So,
according to our first studies, arrsum/3 belongs to the decidable fragment.
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11 Using {log} as an automated theorem prover

As we have said in Sect. 3.6, proving unsatisfiability can be computationally very hard. {log}
may take an unpractical time in proving that a given formula is unsatisfiable. In this section we
present several user commands and facilities that can significantly improve {log}’s efficiency
when used as an automated theorem prover.

11.1 Alternative rewrite rules and execution options

{log} is basically a rewrite system that applies a set of rewrite rules to the input formula until
a fixpoint is reached. Users can slightly change the set of rewrite rules that {log} will apply
to the input formula by means of so-called execution options. Each execution option activates
an alternative rewrite rule for a particular constraint while at the same time deactivates the
corresponding default rewrite rule. These options are meant to improve {log}’s efficiency when
used as an automated theorem prover—although it’s hard to predict which option will have a
positive or a negative influence in the proof of a particular theorem.

There are two independent ways of setting the execution options.
• Using the mode command (Sect. 3.7) as follows:

{log}=> mode(prover([opt1 , . . . ,optn])).

with 0 ≤ n and where each opti is listed in the first column of Table 10. mode(prover)
is equivalent to mode(prover([]))meaning that no execution option is activated (which in
turn implies that the default rewrite rules are applied). When {log} is loaded, mode(prover)
is automatically executed.
When execution options are activated in this way they influence all the goals executed
directly from the {log} environment.

• Using prover_all_strategies/1 as follows:
{log}=> prover all strategies([mod,[opt1 , . . . ,optn]]).

where mod can be the modifiers all or all_single, and opti are the same as above. This
predicate can also be used to get the current set of active execution options by passing it
a variable:

{log}=> prover all strategies(X).

X = [mod,[opt1 , . . . ,optk]]

The default value of prover_all_strategies/1 is [all,dftlist] where dftlist is the list of
all options of Table 10.
When execution options are activated in this way they influence all the goals executed by
means of the commands t_solve/1, t_solve/3 and p_t_solve/1, which are explained
below.
The modifiers all and all_single are explained in the next section.

As can be seen in Table 10, some of the execution options implement a rewrite rule in terms
of RUQ. While this considerably speeds up the execution of many goals, it also tends to slow
down many others and in general produces more complex solutions when the goal is satisfiable.
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Option Affects Description
subset_unify equality Implements set equality as a double set inclusion in-

stead of implementing it by exploiting set unification.
In this way, for example, {log} generates two solutions
instead of four for{X / A} = {Y / B}. In other words,
subset_unify is closer to one of the standard proofs
techniques when it comes to set equality because it as-
sumes the existence of an element in one set and tries
to prove that it belongs to the other set, and vice versa.

un_fe union Implements un(A,B,C) in terms of RUQ (Sect. 6) when
C is not a variable and A or B are variables. In this
way {log} produces two answers instead of six when
solving un(A,B,{X/C}), with A and B variables. These
two answers encode the standard proof of x ∈ A∪B by
considering x ∈ A and x ∈ B.

comp_fe composition Implements comp(R,S,T) (Sect. 4) in terms of RUQ
when T is not a variable and R and S are variables.
In this way, for example, comp(R,S,{[1,a], [2,b], [3, c]})
quickly returns only one solution if comp_fe has been
activated whereas under the default configuration it
will take longer to return the first solution and even
much longer to return other solutions.

oplus_fe overriding Implements oplus(R,S,T) (Sect. 4) in terms of RUQ.
The default rewrite rule for oplus is implemented in
terms of dom, dares and un which in many cases
requires a hard computation. When oplus_fe is
active, for example, the proof of unsatisfiability of
oplus({X,Y,Z/R},S,T) ∧ noplus({X,Y,Z/R},S,T) takes
about one second whereas the default rule takes a very
long time.

ran_fe range Implements ran(R,B) (Sect. 4) in terms of RUQ.
noirules several By default {log} applies some optional inference rules

while the goal is processed. noirules deactivates the
application of these inference rules.

strategy(ordered) disjunction Changes the order in which atoms are processed. It
has shown to impact proofs of the form p ∧ (q ∨ r) ∧ s,
with p,q, r, s atoms. With the default strategy, {log}
first rewrites p and s, say into t, and then solves t ∧ q
and t ∧ r. Instead, with strategy(ordered) the proof
is first transformed into two subproofs (p ∧ q ∧ s and
p ∧ r ∧ s) and then the atoms are rewritten in the order
they appear.

Table 10: Execution options
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As we have said, it’s very hard to predict what execution options will have a positive influence
when proving some theorem. Then, users should try out different combinations of execution
options in the hope that one of them solves the goal in a reasonable time. Given Table 10, the
current number of possible combinations is 128. However, since some rules have influence only
on particular constraints, if the theorem to be proved doesn’t include some such constraint then
the corresponding option can be ignored. Yet the number of possible combinations could still
be too high. Next section shows how to deal with this in a more automatic way.

See Section 15.1 to know how to activate execution options when {log} is called from Prolog.

Decidability with alternative rewrite rules. {log} preserves the same decidability results
when one or more of the alternative rewrite rules are activated. In other words, the solver
doesn’t become “less” or “more” complete by activating one of the execution options of Table
10. There can be differences in the solutions provided by {log} and even in how it doesn’t
terminate, but when it terminates the set of solutions with or without execution options are
equivalent. In a sense, calling {log} with different execution options is like calling different
solvers whose completeness (or lack of it) is the same, although their execution speeds tend to
be different.

Concerning the differences in non-termination when {log} is called with different execution
options consider the following example.

{log}=> dom(R,A) & ran(R,{X/A}). % default config., blocks immediately

{log}=> mode(prover([subset_unify])).
{log}=> dom(R,A) & ran(R,{X/A}). % infinite number of solutions

R = {[X,X]/_N2},
A = {X/_N1}
Constraint: dom(_N2,_N1), set(_N1), X nin _N5, comp(_N4,{[X,X]},_N4),...

Hence, in the default mode one can’t tell whether or not this particular formula is satisfiable,
whereas when subset_unify is active {log} finds it satisfiable but it’s impossible to get a finite
representation of all its solutions. This last point is crucial when this formula is part of a larger,
unsatisfiable one because {log}, in general, won’t be able to prove that.

11.2 Parallel execution

The command p_t_solve(G) solves G by running G in parallel in multiple (operating sys-
tem) threads. Each thread runs G with some combination of the execution options listed in
prover_all_strategies. The number of threads and the combinations of execution options in
use depend on the current value of prover_all_strategies as follows:

• [all,list]: all the possible combinations of the elements of list are used in an equal
number of threads. More precisely: {log} computes the poweset of list, creates a thread
for each element of the powerset, activates the corresponding options and runs G in each
thread.
For example, considering the default value of prover_all_strategies, p_t_solve(G)
will create 128 threads that will run G in parallel, each with a different set of execution
options activated.



50

• [all_single,list]: {log} creates a thread for each element of list, activates the correspond-
ing option and runs G in each thread.
For instance, if the current value is [all_single,[un_fe,comp_fe,oplus_fe,ran_fe]],
p_t_solve(G) will create 4 threads that will run G in parallel, each with a different
execution option (among [un_fe,comp_fe,oplus_fe,ran_fe]) activated.

As soon as one thread terminates the whole computation terminates as well14. In this
way, the net execution time will tend to be the time needed by the thread running the best
combination of execution options for that proof. Note that, however, if the machine has less
cores than the number of threads, thread scheduling will increase the time needed also by the
fastest one. Hence, either run your goal on a machine with enough cores, or reduce the number
of execution options in prover_all_strategies as explained in the previous section, or wait
longer.

Besides, p_t_solve(G) executes G for at most 1 minute15. This parameter can be changed
with the following command:

{log}=> timeout(number).

where number can be a positive integer number representing an amount measured in millisec-
onds; or a variable, if the user wants to consult the current timeout. If {log} is unable to solve
the goal before the timeout is met, the answer returned by p_t_solvewill be timeout.

The following examples illustrates different behaviors on an eight cores standard laptop.

{log}=> prover_all_strategies(X).
X = [all,[subset_unify,comp_fe,un_fe,oplus_fe,ran_fe,noirules,

strategy(ordered)]]
{log}=> timeout(2000).
{log}=> p_t_solve(oplus({X,Y,Z/R},S,T) & noplus({X,Y,Z/R},S,T)).

timeout

{log} is unable to solve the goal in less than two seconds when the default value of prover_all_-
strategies is considered, in spite that there’s at least one combination of execution options that
would solve the goal faster. This is because the operating system has to schedule 128 threads
using 8 cores making the “good” threads to use the computer as much as the “bad” ones. Now
we set three execution options, with oplus_fe among them, which amounts to eight possible
combinations (i.e., the number of available cores). In this way the goal is solved in less than 1.5
seconds.

{log}=> prover_all_strategies([all,[oplus_fe,subset_unify,un_fe]]).
{log}=> timeout(1500).
{log}=> p_t_solve(oplus({X,Y,Z/R},S,T) & noplus({X,Y,Z/R},S,T)).

no

14{log} uses SWI Prolog’s first solution/3 to implement parallel execution.
15For this reason, p t solve stands for parallel, timed solve.

https://www.swi-prolog.org/pldoc/doc_for?object=first_solution/3
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That is, now the operating system has to schedule just eight threads, plus other operating system
processes, using eight cores. In this way our threads will be able to use the computer more
time, than in the previous experiment, allowing one of them to solve the goal faster. Finally, we
run the same goal with the all_singlemodifier with a one second timeout:

{log}=> prover_all_strategies([all_single,[oplus_fe,subset_unify,un_fe]]).
{log}=> timeout(1000).
{log}=> p_t_solve(oplus({X,Y,Z/R},S,T) & noplus({X,Y,Z/R},S,T)).

no

Hence, by using less threads they probably can use the computer for as long as they need,
allowing {log} to solve the goal even faster. But in this case the user needs to analyze what
options are likely to speed up the proof.

Extreme parallelism and timeouts. When a goal is run in parallel using many more threads
than the number of available cores, threads might miss timeout signals. As a consequence,
threads will run beyond the expected timeout. This is usually the case when p_t_solve is called
when a “high” number of execution options belong to prover_all_strategies. As this number
goes down, threads tend to miss less timeout signals. Clearly, this number is high or not in
relation to the number of available cores. Note that the number of threads created by p_t_solve
grows exponentially w.r.t. the number of executions options in prover_all_strategieswhen
the all modifier is used, but grows linearly when all_single is used. The fact that threads
tend to miss timeout signals under these conditions, is outside of the control of {log}.

What if the goal is satisfiable? Parallel execution in {log} is meant to be used to prove unsatis-
fiability. However, users might not know in advance whether or not the goal is unsatisfiable. In
case the goal is satisfiable, {log} will return a first solution as in the normal case but it won’t be
able to compute more solutions. Parallel execution in {log} cannot deal with non-determinism16.
Hence, you will know the goal is satisfiable but you won’t be able to call for more than one
solution.

11.3 Other user commands

There are two more user commands that can be exploited when using {log} as a theorem prover.

• t_solve(G) executes G for as long as the current timeout—i.e, the only difference with
the normal interactive execution is the timeout.

• t_solve(G,timeout,exec conf) executes G for as long as timeout and using the configura-
tion given by exec conf . Possible values for exec conf are:

– The empty list. Behaves as setting the current timeout to timeout and then calling
t_solve(G).

– A list whose elements are the execution options listed in Table 10 and Appendix A.
The execution options passed in the list are activated during the execution of G.

16This is a consequence of the same limitation of SWI Prolog’s first solution/3.
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– try([optList1 , . . . ,optListn]), where each optListi is a list of execution options as in the
previous item. G is first executed with optList1: if the execution doesn’t timeout, no
more is done and t_solve terminates, with either success or failure; if the execution
timeouts, G is executed with optList2. This process continues until all the elements of
the list are attempted. For more information see setlog/5 with option try in Sect.
15.1.

– tryp([optList1 , . . . ,optListn]), where each optListi is a list of execution options as in
try. {log} creates a (operating system) thread for each element of the list. Each of
these threads is configured with the corresponding optList and tries to solve G. As
soon as one thread terminates, the whole computation is bring to an end. All threads
are terminated as soon as timeout is reached. Since the goal is executed in parallel,
only one solution will be returned if the goal is satisfiable.

– try(prover_all). The powerset of the current value of prover_all_strategies
is computed in list power set and the call t_solve(G,timeout,try(power set)) is
executed.

– try(prover_all_single). Let [opt1 , . . . ,optn] be the current value of prover_-
all_strategies, then the call t_solve(G,timeout,try([[opt1], . . . , [optn]])) is exe-
cuted.

– tryp(prover_all). The powerset of the current value of prover_all_strate-gies
is computed in list power set and the call t_solve(G,timeout,tryp(power set))is
executed.

– tryp(prover_all_single). Let [opt1 , . . . ,optn] be the current value of prover_-
all_strategies, then the call t_solve(G,timeout,tryp([[opt1], . . . , [optn]])) is exe-
cuted.

Although, try and tryp may look similar, they aren’t. {log} will return only one solution
under tryp if the goal is satisfiable, but it will have a normal behavior under try if one execution
attempt doesn’t timeout. try is purely sequential; in this sense, it’s like executing all the threads
of tryp one after the other.

12 Types in {log}
As we have said, {log} accepts untyped formulas. For example, the following is a possible value
for a {log} set:

{a,1,{2},[5,"messi"]}

It is also possible to operate with those sets:
{log}=> un({a,1,{2},[5,"messi"]},{X},{Y/R}).
Y = a,
R = {1,{2},[5,"messi"],X}
Constraint: X neq a

As in Prolog, variables are not declared and can assume values of any type. {log} is able
to distinguish between variables representing sets and variables representing non-set objects,
in particular integer numbers. This distinction is made according to the constraints where a
variable participates in. For instance:
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{log}=> X > Y.

makes {log} to classify X and Y as integer variables. This means that:

{log}=> X > Y & un(X,{1,2,3},Z).

will fail just because X cannot be an integer and a set at the same time.
In general the lack of types works well but it allows {log} to accept formulas that cause

undesired behaviors in some cases. For example:

{log}=> id({X/A},R) & id(R,A).

makes {log} to enter an infinite loop that the user can interrupt by typing Ctrl+c. Due to the
first constraint, [X,X] belongs to R and by the second constraint [[X,X],[X,X]] belongs to A
which initiates the loop again. Internally, {log} builds an increasingly larger ordered pair which
eventually will consume all the available memory.

In a sense, this problem is caused because the formula is ill-typed. In effect, in a way, the
first constraint states that A is a set of some elements and R is the identity function on A; but the
second constraint states quite the opposite: A is the identity function on R. A type system would
deem this formula ill-typed and would reject it before any attempt on deciding its satisfiability
is made.

Besides, types can help programmers in avoiding certain errors as is acknowledged by the
programming languages community. On the other hand, types can complicate programs and
formulas by imposing strong restrictions on some operations.

In an attempt to resolve this tension between type safety and typeless freedom, {log} accepts
untyped formulas but the user can activate a typechecker at will. If the typechecker is active all
variables in formulas and clauses must be declared to be of a certain type and the typechecker
is called before a formula is executed (in interactive mode) or when a file is consulted. The
typechecker is activated by issuing:

{log}=> type_check.

and is deactivated with:

{log}=> notype_check.

Before going into the details of {log}’s type system, we present the typed version of the
formula based on the id constraint analyzed above:

{log}=> id({X/A},R) & id(R,A) &
dec(X,t) & dec(A,set(t)) & dec(R,set([t,t])).

Each dec constraint states that a variable is of a certain type. For instance, dec(R,set([t,t]))
states that R is a set of ordered pairs whose components are both of type t. If this formula is
run while the typechecker is not active, {log} will simply ignore the dec constraints. This would
cause a loop, as explained above. Instead, if the typechecker is active, {log} will report a type
error and it will not execute the formula:
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type error: in id(R,A)
R is of type set([t,t])
A is of type set(t)

The error comes from the fact that the type of id is expected to be:

id(set(T),set([T,T]))

for some type T. The error clearly informs that such a type can’t be found given the types of the
arguments.

Typing formulas is good but complicates some formulas such as the first one seen in this
section:

{log}=> un({a,1,{2},[5,"messi"]},{X},{Y/R}).

However, {log} provides a type system where an encoding of the set {a,1,{2},[5,"messi"]}
can be correctly typed—see “Towards untyped sets” in Section 12.1.7.

In the following section the type system and other related features are introduced. In Section
13 the reader will find a complete example of a typed {log} program.

12.1 The type system

{log} defines a type system based on those enforced by the Z and B notations. In this sense, the
type system is oriented towards a typed set theory.

As we have said, when the typechecker is active all variables must be declared to have exactly
one type. These declarations are made by means of the dec/2 constraint, called type constraint.
In dec(V,t), V must be a variable and t must be a type—as defined right afterwards. Type
constraints can be anywhere in the formula—that is, it is not necessary to declare the type of a
variable before its first use. There is available also a dec constraint whose first argument is a list
of variables:

dec([Vi , . . . ,Vn],t) ⇔ dec(Vi ,t) ∧ · · · ∧ dec(Vn ,t)

which helps in reducing the size of typed formulas.
In {log} types are not sets. That is, if t is a type one cannot write X in t. This is simply

an ill-formed, incorrectly sorted constraint. {log} will fail immediately if such constraint is
provided.

In {log} type identifiers and type constructors begin with a lowercase letter. The types and
type constructors available in {log} are the following.

12.1.1 Integers

int is a type representing the set of integer numbers (Z). Then a formula such as X > Y can be
typed as follows:

{log}=> dec(X,int) & X > Y & dec(Y,int).

Numbers are automatically typed as expected. Then a formula such as X > 10 can be typed as
follows:
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{log}=> dec(X,int) & X > 10.

int is a reserved word of the language when in type-checking mode. It can only be used
where a type is allowed.

12.1.2 Character strings

str is a type representing the set of character strings. There are no special purpose operators
defined over str in {log} so strings can be used mainly as elements of sets, as components of
ordered pairs, etc. That is, for instance, the following are all type-correct:

{log}=> dec(X,str) & X = "Messi".
{log}=> "Pele" nin {"Messi","Maradona","Di Stefano"}.
{log}=> ["Di Stefano","Argentina"] = ["Maradona","Argentina"].

Atoms are not strings:

{log}=> dec(X,str) & X = messi.
type error: ’messi’ doesn’t fit in the sum type
{log}=> "messi" = messi.
type error: ’messi’ doesn’t fit in the sum type

str is a reserved word of the language when in type-checking mode. It can only be used
where a type is allowed.

12.1.3 Basic types

Any atom can be used as a type. All these types are called basic types.
For example:

dec(A,address)
dec(N,name)
dec(Zip,zipcode)
dec(C,country)
dec(H,city)

are all possible type constraints declaring variables of basic types. Then, we have the following:

{log}=> dec(A,address) & dec(N,name) & A neq N.
type error: in A neq N

A is of type address
N is of type name

In some notations (e.g., Z) the structure or form of the elements of basic types is unknown.
This provides an abstraction mechanism. For instance, the programmer do not want to say,
at the moment, whether or not an address is a character string, or a number (house) and a
character string (street). But (s)he wants to be able to distinguish between address’es and
name’s, so (s)he uses two different basic types.
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In {log}, because is a programming language, basic types are associated to a known set of
elements. If t is a basic type, then all its elements are of the form t:⟨atom⟩, for any atom. For
example, if we want to bind the atom john to variable N of type name, then:

{log}=> dec(N,name) & N = john.
***ERROR***: type error: ’john’ doesn’t fit in the sum type

while
{log}=> dec(N,name) & N = name:john.
N = name:john

and
{log}=> dec(N,name) & N = city:john.
***ERROR***: type error: in N=city:john

N is of type name
city:john is of type city

The following are further examples of how the :/2 operator works:

{log}=> t:A = u:a.
type error: t:A isn’t well defined
{log}=> t:a = u:a.
type error: in t:a=u:a

t:a is of type t
u:a is of type u

{log}=> t:a = t:a.
yes [type correct, satisfiable]
{log}=> t:a = t:b.
no [type correct, unsatisfiable]
{log}=> {t:a,t:b} = {t:b,t:a,t:b}.
yes

In type-checking mode ‘:’/2 is a reserved symbol. It can only be used as described in this
section. See Section 12.9 to learn more about admissible terms in type-checking mode.

Basic types vs. strings (str). Note that replacing basic types with str might cause some
problems. Using str instead of basic types is fine as long as you are aware that you are using
the same type for things that might be quite different. For example17:

{log}=> idef_type(city,str).
{log}=> idef_type(name,str).

make city and name the same type, str. This might be confusing:

{log}=> dec(N,name) & dec(C,city) & N = "Leo" & C = "Leo".
N = Leo,
C = Leo

17idef type is explained in Section 12.2.
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That is "Leo" can be a name and a city. This is not the case if city and name are basic types.

{log}=> city:’Leo’ = name:’Leo’.
type error: in city:’Leo’ = name:’Leo’

city:’Leo’ is of type city
name:’Leo’ is of type name

12.1.4 Enumerated types

enum([e1 , . . . , en]) is an enumerated type whose elements are all the ei.
For example:

enum([red,blue,green])
enum([normal,warning,failure,stop])
enum([messi,maradona,distefano,carlovich])

are all enumerated types. So a declaration such as:

dec(A,enum([red,blue,green]))

will constrain A to be bound to only those three values. Hence, for instance:

{log}=> dec(Color,enum([red,blue,green])) & Color = blue.
Color = blue

while by issuing

{log}=> dec(Color,enum([red,blue,green])) & Color = yellow.

we get a type error.
In an enumerated type, each ei must be an atom, different from all the basic types in scope

and from all other atoms declared in other enumerated types, even if occurring in different
goals or different clause bodies—and from int and str which can only be used where a type
can be used. All ei in the list must be different from each other. The list must contain at least
two elements. In this sense, enumerated types are persistent and have a global validity. The
reset_types command can be used to delete all type declarations currently in use (see Section
12.10) thus removing all the enumerated types being used.

Note that enum([yes,no]) is a different type than enum([no,yes]). Actually, the type-
checker will issue a type error when the second type is used for the first time because ‘no’ is an
element of another enumerated type.

See Section 12.2 to learn how to give a name to enumerated types so you do not have to
repeat the enumeration in each type constraint.

12.1.5 Sum types

Enumerated types are a particular class of sum types. Sum types implement the widely known
notion of variant18 (heavily used in functional programming languages).

For example, the following are all sum types:
18Wikipedia.org: Tagged union

https://en.wikipedia.org/wiki/Tagged_union
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sum([nil,some(str)])
sum([null,num(int),pair([int,int])])
sum([null,num(int),pair(int,int)])
sum([col(enum([red,blue,green])),other(sum([nil,some(str)]))])

In the first case the type is composed of the values nil and any value of the form some(s)where
s is of type str. The second type is composed of the values null, all the values of the form
num(i)where i is of type int, and all the values of the form pair([i,j])where i and j are of
type int and [i,j] is of a product type—see Section 12.1.6. The third type is isomorphic to the
second one. The following is a possible goal using the second sum type:

{log}=> dec(X,sum([null,num(int),pair([int,int])])) & X = pair([1,2]).
X = pair([1,2])

A sum type is given by a list of terms of any arity. The arguments of non-nullary terms
must be types. The head symbol of each of these terms is called constructor. So, for instance,
nil and some are constructors. This emphasizes the fact that elements of a sum type are built
or constructed according to the constructors that define the type.

Internally, the enumerated type enum([e1 , . . . , en]) is rewritten as sum([e1 , . . . , en]). Then,
enumerations are no more than sum types whose constructors are all nullary terms. For this
reason, for now on, whenever we mention a sum type it includes also the case of an enumeration.

In a sum type, each constructor must be an atom, different from all the basic types in scope
and from all other atoms declared in other sum types—and from int and str which can only
be used where a type can be used. All constructors in the list must be different from each other.
The list must contain at least two elements. Like enumerations, sum types have a global validity,
which persists between one goal and another (in interactive mode) and between one loaded
program and another. One can use the reset_types command to delete all type declarations
currently in use—see Section 12.10.

These restrictions imply that if you want to introduce, for example, two or more option types19

you must use different constructors. In other words you can’t use none and some for all the
option types. For example:

dec(X,sum([nil,some(str)])) & dec(Y,sum([nil,some(int)])).

produces the following type error:

type error: in dec(Y,sum([nil,some(int)]))
type sum([nil,some(int)]) is not well-defined

because nil is part of two different sum types. In this case the correct declarations would be:

dec(X,sum([nils,somes(str)])) & dec(Y,sum([nili,somei(int)])).

This generalizes to more complex sum types.

19Wikipedia.org: Option type

https://en.wikipedia.org/wiki/Option_type
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12.1.6 Product types

If t and u are two types then [t,u] is a type interpreted as the Cartesian product between t and
u. This means that the elements of [t,u] are ordered pairs whose first component is of type t
and the second is of type u.

For example:

dec(B,[city,enum([red,blue,green])])

forces B to be bound only to ordered pairs whose first component is of type city and the second
is red, blue or green. In this way:

B = [A,blue]

will type-check if dec(A,city) is in context. Conversely,

B is X + 7

will fail because is is of type is(int,int).
Product types can be generalized to any number of products and can be nested at any level:

[t,str,[int,v]]

12.1.7 Set types

If t is a type then set(t) is a type representing all the sets whose elements are of type t. In
other words, set(t) represents the powerset of t. Hence, if X is of type set(t), then X is a set
whose elements are of type t.

Obviously, set types are everywhere in {log}. Most of the set constraints available in {log}
are typed by means of the set type constructor. For example, the following is the type of the
un constraint:

un(set(T),set(T),set(T))

for any type T. In other words, un is a polymorphic operator accepting sets of any type as long
as all its elements are of the same type. The empty set is a polymorphic set term. Hence, A = {}
is a correctly typed formula provided A has been declared to be of a set type.

The extensional set constructor is typed in such a way as to accept elements of the same
type. Then, a set such as {e1 , . . . , en/S} is correctly typed if and only if every ei is of type T and
S is of type set(T), for some type T.

Encoding untyped sets. The combination between the set and sum types allows to encode
untyped sets. For example, the set used in the introduction to this section:

{a, 1, {2}, [5,"messi"]}

can be casted in terms of a set type combined with a sum type:

dec(S,set(sum([a,n(int),s(set(int)),p(int,str)]))) &
S = {a, n(1), s({2}), p(5,"messi")}
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12.1.8 Types for binary relations and partial functions

By combining a product type and a set type it is possible to construct types representing binary
relations. Typically:

set([t,u])

corresponds to the type of all binary relations whose ordered pairs have a first component of
type t and a second component of type u. Since this type is frequently used in {log}, the rel
type constructor is introduced as a synonym of a type based on a set and a product type:

rel(t,u) == set([t,u])

Precisely, all the relational operators available in {log} have types based on rel. For example
the following is the type of the comp constraint:

comp(rel(T,U),rel(U,V),rel(T,V))

for any types T, U and V. Again, comp is a polymorphic operator.
The differences between rel(R) (cf. Table 3) and dec(R,rel(t,u)) are the following:

1. rel is part of {log}’s inference engine; dec(R,rel(t,u)) is used only by the typechecker
when it is active.

2. rel(R) is automatically added by {log} in certain situations. For example, if you assert
id(A,R), {log} automatically adds rel(R). Only the user can assert dec(R,rel(t,u)).

3. rel(R) forces the elements of R to be ordered pairs but it does not state what the type of
those pairs is. Then, if only rel(R) is asserted, {[1,a],[{t},[x,1]]} is a possible value
for R.
Instead, if dec(R,rel(t,u)), for any types t and u, is asserted, then R = {[1,a],
[{t},[x,1]]}will not type-check and the formula containing it will not be executed.

4. In this sense rel(R) is weaker than dec(R,rel(t,u)), but it’s automatic.
Note that a cp term is a set of ordered pairs. Then the type of cp(A,B) is rel(u,t) if and

only if A is of type set(t) and B is of type set(u).
Observe that there is no type for partial functions. Then, if F is meant to be a partial function

taking values from some type t and returning values of some type u, you have to assert the
following:

{log}=> dec(F,rel(t,u)) & pfun(F) & ...

Furthermore, pfun(F) is usually a consequence or a property of a program and so you can use
{log} to automatically prove that this is actually the case. For example in:

{log}=> dec([F,G],rel(t,u)) & dec(D,set(t)) &
dec(X,t) & dec(Y,u) &
pfun(F) & dom(F,D) & X nin D & G = {[X,Y] / F}.

pfun(G) is a consequence of that formula. Then, you do not need to assert it, instead you can
prove it:
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{log}=> dec([F,G],rel(t,u)) & dec(D,set(t)) &
dec(X,t) & dec(Y,u) &
pfun(F) & dom(F,D) & X nin D & G = {[X,Y] / F} &
npfun(G).

no

In this way, the formula is lighter but as stronger as if you were conjoined pfun(G) to it.

12.2 Type declarations

Sometimes a type is defined by means of a long, complex type expression. For example, the
following type is taken from a {log} program implementing the Bell-LaPadula security model
[13]:

rel(obj,[int,set(cat)])

Then, if you have to declare a couple of variables of that type the dec constraint becomes
annoying:

dec([O1,O2],rel(obj,[int,set(cat)]))

For these situations {log} offers the idef_type/2 and def_type/2 commands. The first one
is used in goals (in interactive mode), whereas the second is used in program clauses. For
example:

{log}=> idef_type(t,rel(obj,[int,set(cat)])).
{log}=> dec([O1,O2],t) & ...

That is, def_type(t,texpr) and idef_type(t,texpr) state that t, an atom, is a name for type
texpr. The effect of these commands is global and persistent. Afterwards it holds that:

dec(V,t) ⇔ dec(V,texpr)

In [i]def_type(t,texpr): t cannot occur in texpr; cannot be an element of a sum type (in
scope); cannot be the first argument of another def_type command; and cannot be int or str.
In turn, texpr cannot be an atom—because in this case you would be giving a basic type another
name. However, t can be used in other type definitions. For example, ac is used to define oac
and sac:

{log}=> idef_type(ac,[int,set(cat)]).
{log}=> idef_type(oac,set([obj,ac])).
{log}=> idef_type(sac,set([sub,ac])).
{log}=> idef(A,ac) & dec(F,oac) & comp(F,{[A,A]},{}).

Naming sum types is another convenient use of the [i]def_type commands:
{log}=> idef_type(thebest,

enum([messi,maradona,distefano,carlovich])).
{log}=> dec([P1,P2],thebest) & P1 neq P2.

See Section 12.10 to learn how type declarations can be consulted and managed.
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12.3 Typing RUQ and REQ

RUQ and REQ (Section 6) are typed as any other constraint in {log} with the exception that
bound variables need not be typed—although they can be typed if users wish to do so. For
example, the following is type correct, in spite that there’s no type declaration for X:

dec(A,set(int)) & foreach(X in A, X > 0)

{log} will infer X’s type from A’s. However, X can be explicitly typed as follows:
dec(A,set(int)) & foreach(X in A, dec(X,int) & X > 0)

Nevertheless, if the explicit type isn’t the correct one, {log} will issue a type error message:
{log}=> dec(A,set(int)) & foreach(X in A, dec(X,t) & X > 0).

***ERROR***: type error: in dec(X,t), variable X is already declared

In effect, when {log} processes the RUQ it attempts to find out the type for X (which is int,
given A’s type), but when it processes the inner formula the type inferred by {log} for X doesn’t
coincide with the type declared by the user.

Same considerations apply when a control expression is used:
dec(A,set([int,t])) & foreach([X,Y] in A, X > 0)

However, parameters used inside RUQ and REQ must be typed by the user with a dec
predicated inside the RQ:

dec(A,set(t)) & dec(F,rel(t,int)) &
foreach(X in A,[Y], Y > 0, applyTo(F,X,Y) & dec(Y,int)).

The typechecker doesn’t support forall (Section 6.2) nor general existential quantifiers
(Section 6.3).

12.4 Typing user-defined predicates

If you activate the typechecker and you want to consult a file containing a collection of {log}
clauses (i.e., a {log} program), then you first need to type clauses of that file.

For instance, you may want to define a predicate adding a (name,address) pair to the function
holding the addresses of your acquaintances:

add_person(P,N,A,P_) :-
pfun(P) & dom(P,D) & N nin D & P_ = {[N,A]/P}.

If you put this predicate in a file then you have to type the predicate, before loading the file in
type-checking mode:

def_type(na,[name,address]).
dec_p_type(add_person(set(na),name,address,set(na))).
add_person(P,N,A,P_) :-

dec(D,set(name)) & [D is typed inside the clause]
pfun(P) & dom(P,D) & N nin D & P_ = {[N,A]/P}.
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The first line simply declares a name for the type [name,address]—this is optional. In the
second line dec_p_type/1 declares the type of add_person by giving the type of each and every
argument. It can be read as “declare predicate type”. Then, for example, the first set(na)
states that the first argument of add_person must be of that type; name states that the second
argument of add_personmust be of that type; and so on and so forth. Given that D is an internal
variable we declare its type inside add_person.

A dec_p_type declaration must precede the definition of the corresponding predicate. If a
predicate is defined in more than one clause, only one dec_p_type declaration must be in place.
Directives and facts (i.e., unit clauses) are not typed.

Note that before re-consulting a file or consulting a new one, you have to reset all type
declarations—see Section 12.10 to learn how to do this. The abolish/0 command does not
remove global information about types.
dec_p_type/1 is a reserved word of the language when the typechecker is active. It cannot

be used in other contexts.

12.5 Typing polymorphic operators

We have already shown that some operators are polymorphic. For example, we already know
the type of these operators:

un(set(T),set(T),set(T))
comp(rel(T,U),rel(U,V),rel(T,V))
id(set(T),rel(T,T))

where T, U and V are type variables. That is, T, U and V are not types but they can be bound to
types—recall that types and type constructors always begin with a lowercase letter.

You can define your own polymorphic operators and type them. For example, if you want
to define the predicate un3which performs the union of three sets, you can write that definition
in some file as follows:

dec_pp_type(un3(set(T),set(T),set(T),set(T))).
un3(A,B,C,D) :-
dec(X,set(T)) & [X typed with same type variable, T]
un(A,B,X) & un(X,C,D).

dec_pp_type/1 is the equivalent to dec_p_type for polymorphic predicates. It can be
read as “declare polymorphic predicate type”. The difference between a dec_pp_type and
a dec_p_type declaration is that the former accepts type variables, while the latter does not.
{log} understands that predicate p is polymorphic if it is preceded by a dec_pp_type(p(...))
declaration, where the arity of p must coincide with that of p(...) inside the dec_pp_type
declaration.

Note that X in un3 is typed with the same type variable, T, used in the dec_pp_type decla-
ration; otherwise a type error will be informed. dec accepts type variables only when placed
inside polymorphic predicates.

12.6 Running formulas in type-checking mode

If formulas are run when the typechecker is active, all variables must be declared to have exactly
one type.
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For example, if you want to call the un3 predicate defined in the previous section you will
have to give the type of each actual parameter:

{log}=> dec([W,X,Y,Z],set(t)) & un3(W,X,Y,Z).

Note that in the dec constraint we use a type, i.e. t, and not a type variable, e.g. T. Recall that
elements of type t are of the form t:elem for any atom elem. So you can call un3 as follows:

{log}=> dec([X,Y,Z],set(t)) & un3({t:a,t:aa},X,Y,Z).

Ordered pairs can also be used as expected. For example:

{log}=> dec([X,Y,Z],rel(t,u)) & dec(I,t) &
un3({[I,u:abc]},X,Y,Z).

Similarly, the elements of int and str can be used in formulas:

{log}=> dec(Z,set(int)) & dec([I,J],int) &
un3({1,2,3},{I,J},{},Z).

{log}=> dec(Z,set(str)) & dec([I,J],str) &
un3({"Messi","Maradona","Di Stefano"},{I,J},{},Z).

12.7 groundsol when typechecking is active

groundsol can also be used in typechecking mode (see Section 3.2). Differently from the
untyped case, in typechecking mode groundsol returns constants of the appropriate type for
each variable. For example:

{log}=> dec(X,set([int,enum([a,b])])) & size(X,3).

X = {[0,b],[1,b],[2,b]}

{log}=> dec(X,set([t,str])) & size(X,3).

X = {[t:n0,n0],[t:n1,n1],[t:n2,n2]}

Observe the difference in the output when the same goals are run after turning off typechecking:

{log}=> notype_check.
{log}=> dec(X,set([int,enum([a,b])])) & size(X,3).

X = {n0,n1,n2}

{log}=> dec(X,set([t,str])) & size(X,3).

X = {n0,n1,n2}

Recall that type information is ignored when the typechecker isn’t active. Then, {log} processes
only size(X,3) in both goals. Since the elements of Xhave no type, {log} binds them to constants
of the form n⟨number⟩, as explained at the end of Section 3.2.
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On the contrary, when typechecking is active {log} generates constants of the appropriate
types. For instance, in the first goal the elements of X are ordered pairs whose first component
is an integer number and the second is either a or b. In the second goal, the first components
are of type t, whereas the seconds are of type str. Then, t:n0 is a first component because the
elements of type t are of the form t:⟨atom⟩, as explained in Section 12.1.3. In turn, the second
components are of the form n⟨number⟩ because they are strings.

In general, {log} generates the following constants when groundsol is called in typechecking
mode:

• int→ 0,1,-1,2,-2,. . .
• str→ n0, n1, n2,. . .
• basic type t→ t:n0, t:n1, t:n2,. . .
• sum types → the nullary constructors are used as constants; if a non-nullary constructor
x depends on type T then constants of the form x(c), with c of type T, are generated.

• product type → ordered pairs where the first components and the second components
are constants of the corresponding types.

• set type → the constants are singleton sets where the elements are of the corresponding
type.

The combination between groundsol and type checking can’t be used to solve user-
defined predicates including existential variables.

12.8 Proving goals involving finite types

Clearly, the following goal is unsatisfiable:
{log}=> dec(Z,enum([t,f])) & Z neq t & Z neq f.

because the only two values Z can take are exactly t and f. When working in typechecking
mode, {log} automatically transforms that goal into:

Z in {t,f} & Z neq t & Z neq f.

thus answering no. However, if the typechecker isn’t active, the same goal is found to be
satisfiable because the dec predicate is ignored and Z can take any value beyond t and f.

As another example, consider the following goal:
dec(F,rel(enum([t,f]),int)) & pfun(F) & F = {X1,X2,X3} &
dec([X1,X2,X3],[enum([t,f]),int]) & X1 neq X2 & X1 neq X3 & X2 neq X3.

As F is a partial function and given the neq constraints, the first components of X1, X2 and X3must
be different from each other. At the same time, these first components have type enum([t,f]).
So at least two of these first components must have the same value. Consequently the goal is
unsatisfiable. As with the first goal, {log} identifies this situation and automatically conjoin
suitable membership constraints to make type information available to the constraint solver.
Note that an alternative encoding of the above goal without types is:
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foreach([X,Y] in F, X in {t,f} & integer(Y)) &
pfun(F) & F = {X1,X2,X3} &
X1 neq X2 & X1 neq X3 & X2 neq X3.

which is found to be unsatisfiable, as well. These situations arise when the formula involves
finite types and entails, in a way or another, “too many” neq constraints involving variables
whose type is finite. In this context T is a finite type if:

1. T is an enumerated type (i.e., a sum type with only nullary constructors).

2. T is the sum of finite types. This means that all the constructors of the sum type take
values belonging to finite types.

3. T is the product of at least one finite type. One may be tempted to define this rule as:
T is the product of finite types. However, the second example above shows that this
alternative definition is wrong as [enum([t,f]),int]wouldn’t be finite but that formula
is unsatisfiable. Conversely, according to our definition, [enum([t,f]),int] is a finite
type because enum([t,f]) is a finite type.

4. T is the set type of a finite type.

12.9 Admissible terms in type-checking mode

In type-checking mode only terms that can be assigned a type are admissible. Then, for instance,
[a|[]] is not an admissible term in type-checking mode:

{log}=> [a|[]] = 1.
type error: ’[a]’ doesn’t fit in the sum type

Clearly, the admissible terms are correlated with the type system as follows:

• Variables – any type

• Integer numbers – type int

• Strings – type str

• Atoms – enumerated type

• Non-nullary terms – sum type

• Terms of the form type:elemwhere type and elem are atoms – type type

• Nested lists – product type

• {} – any set type

• Sets – set type

• Any syntactically correct term recursively constructed using the terms listed above.

All the other terms are not admitted. In particular, the type checker doesn’t support general
intensional set terms (Section 5.2).
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12.10 User commands to work with types

The following user commands are available to deal with types when using {log} in interactive
mode.

• idef_type/2. Besides being used for type declarations as described in Section 12.2, this
command can be used to get the type expression associated to a type name by passing in
a variable as a second argument.
For example, assuming that t is a type name for some type expression:

{log}=> idef_type(t,E).
E = set([obj,ac])
Another solution? (y/n)
no

• reset_types/0 deletes all currently active type declarations. These include declarations
made through the following predicates: [i]def_type, dec_p_type and dec_pp_type.
This command should be used if a file is going to be re-consulted. Note that all the type
declarations made in other loaded files or in interactive mode are also deleted.

• type_of(pred) where pred is an atom, prints the type of pred as given by either a
dec_p_type or a dec_pp_type declaration for pred.
For example:

{log}=> type_of(dres).
dres(set(T),set([T,U]),set([T,U]))

yes

• type_decs/1where the parameter can be td, pt or ppt. It shows all the pairs (type name,
type expression) (td); the type of all non-polymorphic predicates (pt); and the type of
all polymorphic predicates (ppt); in all three cases, with respect to the currently active
declarations.

• expand_type(t,E) where t is a type expression and E is a variable. If t is given in terms
of type names, these are recursively replaced by the corresponding type expressions.
For example:

{log}=> idef_type(t,set(a)).
{log}=> idef_type(a,set(b)).
{log}=> expand_type(t,E).
E = set(set(b))
Another solution? (y/n)
no
{log}=> expand_type([t,a],E).
E = [set(set(b)),set(b)]
Another solution? (y/n)
no
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13 Specifying and verifying state machines

The contents of this section and its implementation in {log} are still experimental

{log} can be used to specify state machines in a similar fashion as in set-based, state-based
formal notations such as B [6] and Z [2]. Furthermore, {log} provides declarations that are used
to automatically generate verification conditions on those state machines. Later, users can use
{log} itself to automatically prove or disprove these verification conditions. We will show how
to do that by encoding in {log} the classic birthday book problem used by Spivey to illustrate
the Z formal notation.

The features described in this section can only be used if the file setlog_vcg.pl is present
in the working directory.

13.1 The specification of the birthday book problem

In {log} a state machine is composed of:

1. Zero or more parameters

2. One or more state variables

3. Zero or more axioms

4. Zero or more state invariants

5. Possibly a predicate defining a set of initial states

6. One or more state operations (i.e., state transitions)

7. Zero or more theorems

Users must declare these elements in that order, except for theorems which can be declared
anywhere in the specification after the first axiom.

We assume the birthday book specification is saved in a file named bb.slog.
Hence, we start by declaring the state variables of the birthday book. The birthday book is

a system which records people’s birthdays, and is able to issue a reminder when the day comes
round. As Spivey, we will use two state variables: Known, holding the names of the people in
our book; and Birthday, mapping names to birthdays. Then, we add the following fact at the
beginning of file bb.slog:

variables([Known,Birthday]).

where variables is used to declare the state variables of a state machine. It receives as an
argument a list of distinct variables—i.e., no constants or compound terms are allowed; the
same variable cannot be more than once in the list. variables is a reserved word when it comes
to the specification of state machines using setlog_vcg.pl. There can be only one variables
declaration per state machine.

The intention is for Known to be the domain of Birthday and for the latter to be a partial
function. As these properties are meant to be state invariants we introduce the following
declarations and predicates:
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invariant(birthdayBookInv).
birthdayBookInv(Known,Birthday) :- dom(Birthday,Known).

invariant(pfunInv).
pfunInv(Birthday) :- pfun(Birthday).

That is, before introducing the predicate stating an invariant we declare it to be an invariant by
means of the invariant declaration—a reserved word. This declaration takes as its argument
the head (without arguments) of the predicate stating the invariant.

There can be zero or more invariant declarations but any sensible state machine will have
at least one of them. All the invariant declarations must appear right after the variables
declaration and before other declarations we will shortly introduce. In turn, an invariant is a
predicate that depends on at least one state variable. As can be seen, birthdayBookInv depends
on the two state variables whereas pfunInv depends only on Birthday. Invariants may also
depend on model parameters.

After introducing an invariant the user has to introduce its negation as well. So the above
predicates are completed as follows.

invariant(birthdayBookInv).
birthdayBookInv(Known,Birthday) :- dom(Birthday,Known).
n_birthdayBookInv(Known,Birthday) :- neg(dom(Birthday,Known)).

invariant(pfunInv).
pfunInv(Birthday) :- pfun(Birthday).
n_pfunInv(Birthday) :- neg(pfun(Birthday)).

Recall Section 3.5 to know how to declare the negation of a user-defined predicate and the
limitations of the neg connective. In particular, recall that {log} doesn’t automatically compute
the negation of these predicates.

Declaring that a predicate is an invariant doesn’t mean that the state machine will indeed
verify it. The invariant declaration is just a declaration of intent. However, {log} will use these
declarations to automatically generate verification conditions that will make evident whether
or not the state machine verifies these invariants—see Section 13.4.

We can combine the above declarations with type declarations as follows:

def_type(bb,rel(name,date)).
def_type(kn,set(name)).

invariant(birthdayBookInv).
dec_p_type(birthdayBookInv(kn,bb)).
birthdayBookInv(Known,Birthday) :- dom(Birthday,Known).
dec_p_type(n_birthdayBookInv(kn,bb)).
n_birthdayBookInv(Known,Birthday) :- neg(dom(Birthday,Known)).

invariant(pfunInv).
dec_p_type(pfunInv(bb)).
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pfunInv(Birthday) :- pfun(Birthday).
dec_p_type(n_pfunInv(bb)).
n_pfunInv(Birthday) :- neg(pfun(Birthday)).

After introducing invariants we can introduce a predicate defining a set of initial states. In
the case of the birthday book we have the following:

initial(birthdayBookInit).
dec_p_type(birthdayBookInit(kn,bb)).
birthdayBookInit(Known,Birthday) :-
Known = {} &
Birthday = {}.

As invariant, the initial declaration takes as argument the head of the predicate defining
the initial state. initial is another reserved word.

There can be zero or one initial declaration in any given state machine but most of them
will have one. The initial declaration must come after the last invariant (if any) and before
the first operation. The predicate defining the initial states of the system must depend on at
least one state variable, and may depend on model parameters.

The last component of a state machine is one or more state operations or state transitions.
For example, in the birthday book we have an operation to remind the user of all the persons
whose birthday is in a given date.

operation(remind).
dec_p_type(remind(kn,bb,date,kn,kn,bb)).
remind(Known,Birthday,Today,Cards,Known,Birthday) :-
rres(Birthday,{Today},M) & dec(M,bb) &
dom(M,Cards).

Again, the operation declaration takes as argument the head of the predicate defining the
operation. It is a reserved word, too.

The above operation doesn’t change the state of the system. We can tell that because there
are no next-state variables in its head. A next-state variable is a state variable ending with the
underscore character (‘_’). For instance, Known_ would be a next-state variable in the birthday
book specification. In notations such as Z, Known_ would have been written as Known′. The
underscore character is a reserved symbol when it comes to the specification of state machines.

If an operation doesn’t change the value of one of the state variables, then either:
• Include the variable twice in the operation’s head (for example as in remid above). In this

way, some users may see more clearly that the operation isn’t changing that variable—for
instance Z users because in Z one must explicitly indicate which variables are unchanged
by an operation.

• Include the variable once in the operation’s head. This may be closer to B specifications.
• Don’t include the variable in the operation’s head. If the variable isn’t needed for that

operation then just don’t write it as an argument for that operation.
In any of these cases {log} will interpret that the operation doesn’t change the value of that
variable. Making explicit that an operation doesn’t change a state variable allows {log} to infer
some facts about the specification, as we will see in Section 13.4.
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On the other hand, when an operation does change the value of a state variable we have to
include the corresponding next-state variable in the head (and use it in the body). For example,
the following operation adds a new birthday to the book:

operation(addBirthday).
addBirthday(Known,Birthday,Name,Date,Known_,Birthday_) :- ...

Then Known_ and Birthday_ are part of the operation’s head.
The body of addBirthday is given as the disjunction between two predicates: the first,

considers the case when the name whose birthday is going to be added is not in the book, and
the second considers the opposite situation. The first case is covered by addBirthdayOk:

dec_p_type(addBirthdayOk(kn,bb,name,date,kn,bb)).
addBirthdayOk(Known,Birthday,Name,Date,Known_,Birthday_) :-
Name nin Known &
un(Known,{Name},Known_) &
un(Birthday,{[Name,Date]},Birthday_).

The second case is covered by nameAlreadyExists:

dec_p_type(nameAlreadyExists(kn,name)).
nameAlreadyExists(Known,Name) :-
Name in Known.

Note that we don’t declare these predicates as operations. This is because we declare the
predicate making the disjunction of them as the operation:

operation(addBirthday).
dec_p_type(addBirthday(kn,bb,name,date,kn,bb)).
addBirthday(Known,Birthday,Name,Date,Known_,Birthday_) :-
addBirthdayOk(Known,Birthday,Name,Date,Known_,Birthday_)
or
nameAlreadyExists(Known,Name) & Known_ = Known & Birthday_ = Birthday.

It would be wrong to declare all three (and even two) of them as operations. Think of
addBirthdayOk and nameAlreadyExists as auxiliary predicates used to define the operation.
Auxiliary predicates shouldn’t be declared as operations. Nonetheless, {log} won’t be able to
warn the user if this is happening. The problem with declaring auxiliary predicates as opera-
tions is that {log} will generate more verification conditions than necessary thus enlarging the
verification process—see Section 13.4.

It is also not possible to first define addBirthday and then addBirthdayOk and nameAlready-
Existsbecause when the typechecker finds addBirthday it cannot resolve the type of addBirth-
dayOk and nameAlreadyExists as it hasn’t typechecked them already.

The birthday book offers an operation to find the birth date of a given person:

dec_p_type(findBirthdayOk(kn,bb,name,date)).
findBirthdayOk(Known,Birthday,Name,Date) :-
Name in Known &
applyTo(Birthday,Name,Date).
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dec_p_type(notAFriend(kn,name)).
notAFriend(Known,Name) :-
Name nin Known.

operation(findBirthday).
dec_p_type(findBirthday(kn,bb,name,date)).
findBirthday(Known,Birthday,Name,Date) :-
findBirthdayOk(Known,Birthday,Name,Date)
or
notAFriend(Known,Name).

As can be seen, this operation doesn’t change the state of the system.
If V is a state variable and V_ is an argument of an operation then Vmust be another argument.

Including V_ as an argument when V isn’t a state variable is an error. Including V_ more than
once is an error. If V is a state variable it can be included at most twice in the head of the
operation.

13.2 Parameters, axioms and theorems

In this section we will explain how parameters, axioms and theorems can be used to specify state
machines. If parameters are used they must be declared at the beginning of the specification,
axioms must be included right after the declaration of state variables. Theorems can be declared
anywhere after the first axiom.

Parameters play the role of machine parameters or constants in B specifications, and the
role of variables declared in axiomatic definitions in Z. Axioms play the role of properties in B,
and the role of predicates appearing in axiomatic definitions in Z. That is, parameters serve to
declare the existence of some (global) values accessible to invariants and operations, but they
cannot be changed by operations. Axioms, in turn, can be used to state properties of parameters.
In fact, an axiom can only depend on parameters—i.e., axioms can’t depend on state variables
or any other kind of variables.

As an example, consider a specification dealing with users and their passwords. We are
interested in stating that passwords are stored in an encrypted form but we don’t want to specify
a particular encryption algorithm or cryptographic hash function. In this case we can work as
follows:

parameters([Password,CryptoHash,Hash]).

axiom(axm1).
axm1(CryptoHash) :- pfun(CryptoHash).

axiom(axm2).
axm2(Password,CryptoHash) :- dom(CryptoHash,Password).

axiom(axm3).
axm3(CryptoHash,Hash) :- foreach([X,Y] in CryptoHash, Y in Hash).
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From now on, we can use Password, CryptoHash and Hash as arguments in invariants,
operations and theorems. However, including CryptoHash_ (i.e., an after state variable) as an
argument in an operation will make {log} to issue an error.

Theorems are used to state properties that can be deduced from axioms, invariants, op-
erations or theorems that have already been declared. For this reason, theorems can only be
declared after the first axiom.

For example, if we have:

variables([X,Y,Z]).

invariant(inv1).
inv1(X) :- 0 =< X.

invariant(inv2).
inv2(Y) :- 0 =< Y.

then we can declare the following theorem statement:

theorem(thrm1).
thrm1(X,Y) :- 0 =< X + Y.

for which we provide a proof:

proof_thrm1(X,Y) :- neg(inv1(X) & inv2(Y) implies thrm1(X,Y)).

and the negation of thrm1 (as we do with invariants):

n_thrm1(X,Y) :- neg(0 =< X + Y).

The proof of a theorem statement named th(x1 , . . . ,xm) must be a clause named proof_th
located right after th and whose body must be of the form:

neg(h1 & h2 & . . . & hn implies th(x1 , . . . ,xm))

where each hi must be an axiom, invariant, operation or theorem already declared. Note that
the proof of a theorem is stated as an unsatisfiability condition.

In this way, {log}will include verification conditions ensuring that the proofs of theorems are
correct so users can use the theorem statements as hypotheses for other verification conditions.

13.3 Execution of state machines

Any predicate defined in the {log} specification of a state machine can be called as any {log}
predicate. Therefore, the specification can be seen as an executable prototype where operations
implement the prototype’s functionality. Executions of the specification’s operations can be
performed to spot errors early on, analyze complex scenarios, analyze interactions among the
operations, etc. Later, properties such as invariant preservation can be proved (Sect. 13.4).

Let’s see an example of an execution assuming the specification of the birthday book has
been saved in a file called bb.slog.
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{log}=> consult(’bb.slog’).

{log}=> birthdayBookInit(K,B) & addBirthday(K,B,messi,240687,K_,B_).
K = {},
B = {},
K_ = {messi},
B_ = {[messi,240687]}

Another solution? (y/n) y
no

In this execution, the predicate setting the initial state (birthdayBookInit) is called followed
by a call to one of the operations (addBirthday). Note how state variables are chained between
predicates: K and B are passed in to birthdayBookInit and then passed in as the initial state to
addBirthday. Actually, we can call more than one operation in the same execution:

{log}=> birthdayBookInit(K,B) &
addBirthday(K,B,messi,240687,K1,B1) &
addBirthday(K1,B1,’Pele’,231040,K_,B_).

K = {},
B = {},
K1 = {messi},
B1 = {[messi,240687]},
K_ = {messi,Pele},
B_ = {[messi,240687],[Pele,231040]}

If we don’t need the complete execution trace of a simulation but only its final state and
outputs, then we can define a clause for the simulation whose arguments are the variables we
are interested in:

sim(K_,B_) :-
birthdayBookInit(K,B) &
addBirthday(K,B,messi,240687,K1,B1) &
addBirthday(K1,B1,’Pele’,231040,K_,B_).

{log}=> sim(K,B).

K = {messi,Pele},
B = {[messi,240687],[Pele,231040]}

We can use variables instead of constants for input parameters but in that case we might get
a list of constraints (not only equalities) and many variables, but at the same time we’ll be able
to conclude more general properties about the specification.

{log}=> birthdayBookInit(K,B) &
addBirthday(K,B,N1,D1,K1,B1) &
addBirthday(K1,B1,N2,D2,K_,B_).
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K = {},
B = {},
K1 = {N1},
B1 = {[N1,D1]},
K_ = {N1,N2},
B_ = {[N1,D1],[N2,D2]}
Constraint: N1 neq N2

Constraints and variables can be avoided in the computed answer if executions are run in
groundsolmode (Sect. 3.2), but in this case the results are less general.

{log}=> groundsol.
{log}=> birthdayBookInit(K,B) &

addBirthday(K,B,N1,D1,K1,B1) &
addBirthday(K1,B1,N2,D2,K_,B_).

K = {},
B = {},
N1 = n0,
D1 = n3,
K1 = {n0},
B1 = {[n0,n3]},
N2 = n1,
D2 = n2,
K_ = {n0,n1},
B_ = {[n0,n3],[n1,n2]}

13.4 Automatic generation of verification conditions

Once we have defined a state machine as described above, we can use the Verification Condition
Generator (VCG) to help in its verification. The VCG generates some verification conditions that,
when successfully discharged, will give some confidence on the correctness of the specification.
{log} itself can be used to automatically prove or disprove these verification conditions.

Assuming the birthday book specification is saved in file bb.slog, the user can issue the
following commands to generate the verification conditions associated to this specification:

{log}=> consult(’bb.slog’).
{log}=> vcg(’bb.slog’).

In this way, {log} generates a file named bb-vc.slog containing the verification conditions. The
file is consulted as usual:

{log}=> consult(’bb-vc.slog’).

If vcg is called more than once on the same file, the corresponding -vc file will be
overwritten, thus loosing any changes introduced by the user.
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The main predicate in that file is named check_vcs_bb. When this command is run, {log}
attempts to discharge all the verification conditions:

{log}=> check_vcs_bb.

Checking birthdayBookInit_sat_birthdayBookInv ... OK
Checking birthdayBookInit_sat_pfunInv ... OK
Checking addBirthday_is_sat ... OK
Checking findBirthday_is_sat ... OK
Checking remind_is_sat ... OK
Checking addBirthday_pi_birthdayBookInv ... OK
Checking addBirthday_pi_pfunInv ... ERROR
Checking findBirthday_pi_birthdayBookInv ... OK
Checking findBirthday_pi_pfunInv ... OK
Checking remind_pi_birthdayBookInv ... OK
Checking remind_pi_pfunInv ... OK

Note that {log} is able to discharge all but one of the verification conditions (addBirthday_-
pi_pfunInv).

In general, the command used to discharge proof obligations is namedcheck_vcs_⟨fileName⟩,
where fileName is the name of the file containing the specification of the state machine. This
command expects no arguments. There are two more commands with the same name but
different arities:

• check_vcs_⟨fileName⟩(+Timeout,+OptList) where Timeout must be a positive number
indicating a timeout measured in milliseconds and OptList is any term accepted by
setlog/5 in its fifth argument as documented in Sect. 15.1. The timeout is used for each
proof obligation—for example, in the birthday book the maximum time this command
can take is 11*Timeout milliseconds because there are 11 verification conditions. Some
examples of this command are the following:

{log}=> check_vcs_bb(1000,[subset_unify,comp_fe]).

{log}=> check_vcs_bb(2000,try(prover_all)).

• check_vcs_⟨fileName⟩(+OptList) is implemented as:

check_vcs_⟨fileName⟩(60000,OptList).

• check_vcs_⟨fileName⟩ is implemented as:

check_vcs_⟨fileName⟩(60000,[]).

13.5 Analyzing undischarged verification conditions

{log} may not be able to discharge a verification condition for many reasons. If a verification
condition falls outside the decision procedures implemented in {log}, then the tool will be
unable to discharge it. There’s nothing to do in these cases. If the specification is wrong (e.g.,
a precondition is missing, an invariant is too strong, etc.) then it may be impossible to prove
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some verification condition. In these cases the counterexamples returned by {log} can be of
much help (Section 13.5.1). Finally, a verification condition may require more hypotheses, as
explained in Section 13.5.2.

13.5.1 Counterexamples of undischarged verification conditions

When a verification condition such as addBirthday_pi_pfunInv remains undischarged, {log}
saves a counterexample. These counterexamples can be very helpful in finding out why the
proof failed. There are two kinds of counterexamples: abstract and ground. Abstract coun-
terexamples may include many variables; ground counterexamples bind a ground term to every
variable (recall Section 3.2).

Let’s see the abstract counterexample of addBirthday_pi_pfunInv:

{log}=> vcace(addBirthday_pi_pfunInv).

Birthday = {[Name,_25302]/_25228}
Known_ = {Name/Known}
Birthday_ = {[Name,Date],[Name,_25302]/_25228}

Constraints: pfun(_25228) & comppf({[Name,Name]},_25228,{}) &
Name nin Known & Date neq _25302

As can be seen, vcace20 receives the name of a verification condition as its sole argument and
prints a counterexample containing many variables (e.g. _25302) besides those used in the
specification.

This counterexample helps to understand why addBirthday_pi_pfunInv failed. In effect,
notice that Name is in the domain of Birthday but it doesn’t belong to Known (see the constraint
Name nin Known). This is in contradiction with invariant birthdayBookInv which states that
Known must be the domain of Birthday. Given that we have proved that birthdayBookInv is
indeed an invariant we can include it as an hypothesis to prove addBirthday_pi_pfunInv—see
how to do that in Section 13.5.2.

The ground counterexample can be seen with command vcgce (g for ground):

{log}=> vcgce(addBirthday_pi_pfunInv).

Birthday = {[n2,n1]}
Known = {}
Name = n2
Date = n0
Known_ = {n2}
Birthday_ = {[n2,n0],[n2,n1]}

We can see again thatKnown is empty whileBirthday is not thus contradictingbirthdayBookInv.

20vcace stands for verification condition abstract counterexample.
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13.5.2 The findh command family

{log} was unable to discharge addBirthday_pi_pfunInv because of the way it generates verifi-
cation conditions. This point is treated more deeply in Section 13.6. For the moment, it suffice to
say that {log} generates each verification condition with the minimum number of hypotheses.
In consequence, {log} is sometimes unable to discharge a verification condition because there
are some missing hypotheses. Missing hypotheses can only be found among the axioms and
invariants declared in the specification.

The findh family of commands helps users to find missing hypotheses in verification con-
ditions whose proofs failed (as with addBirthday_pi_pfunInv). However, before calling these
commands take a look at the counterexamples returned by {log} because in many cases they pro-
vide enough information to solve the problem. The simplest way of finding missing hypotheses
(although in some cases it will take a long time), is by running the findh command:

{log}=> findh.
Missing hypotheses for addBirthday_pi_pfunInv: [[birthdayBookInv]]

Now we can add birthdayBookInv as an hypothesis of addBirthday_pi_pfunInv. In order
to do that, we edit bb-vc.slog, look up addBirthday_pi_pfunInv and modify it as follows (as
the comment suggests):

addBirthday_pi_pfunInv :-
birthdayBookInv(Known,Birthday) & %%% NEW HYPOTHESIS
neg(
pfunInv(Birthday) &
addBirthday(Known,Birthday,Name,Date,Known_,Birthday_) implies
pfunInv(Birthday_)

).

Later, the user should consult bb-vc.slog again and run check_vcs_bb. If the proof fails, findh
can be called again in which case it will probably find other hypotheses.

If vcg is called more than once on the same file, the corresponding -vc file will be
overwritten, thus loosing all hypothesis added by the user.

findh goes through all the failed proofs searching for missing hypotheses for each of them. It
first tries with each axiom and invariant as a possible hypothesis. In some cases, the conjunction
of two or more axioms or invariants are necessary to prove a given verification condition. For
this reason, if findh couldn’t find a single axiom or invariant, it tries by conjoining two of them;
if this isn’t enough, findhwill try with conjunctions of three axioms and invariants. This process
continues until the conjunction of all axioms and invariants is tried out. In specifications with
more than 10 to 15 axioms and invariants the number of conjunctions of 2, 3 or more elements
will be computationally prohibitively.

As a consequence, {log} provides also the following findh and findhn commands based on
the same idea:

• findh(vc) where vc is the identifier of a verification condition (e.g. addBirthday_pi_-
pfunInv). Works as findh but only for vc.
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• findh(vc,n,o|e,axinvs) where vc is the identifier of a verification condition (e.g. add-
Birthday_pi_pfunInv), n is a positive natural number, o|e is either the atom o or e, and
axinvs is a list of axiom or invariants identifiers. This command works as findh but only
for vc and by applying the following restrictions.

– It will attempt with conjunctions of exactly n axioms or invariants.
– If the third argument is o it will use only the axioms and invariants passed in axinvs.
– If the third argument is e it will exclude the axioms and invariants passed in axinvs.

• findhn(n) where n is a positive natural number. Works as findh but only with conjunc-
tions of exactly n axioms or invariants.

• findhn(vc,n)wherevc is the identifier of a verification condition (e.g. add-Birthday_pi_-
pfunInv), and n is a positive natural number. Works as findh but only for vc and only
with conjunctions of exactly n axioms or invariants.

Observe that, in general, more than one conjunction of axioms or invariants can be a missing
hypothesis. When this is the case, the findh commands will print a list with all of them. So, for
example:

{log}=> findh.
Missing hypotheses for xxx_pi_yyy: [[ax1,inv3],[inv2,inv4]]
Missing hypotheses for vvv_pi_www: [[ax3],[inv3],[inv4]]

means that the conjunction of ax1 and inv3 and the conjunction between inv2 and inv4 are
missing hypothesis for the verification condition named xxx_pi_yyy; and that ax3, inv3 and
inv4 are missing hypothesis for vvv_pi_www. In these cases, the user should evaluate which
of the missing hypothesis is the most promising to conclude the proof of the corresponding
verification condition.

13.6 Verification conditions generated by the VCG

The VCG generates the following verification conditions. The examples given below correspond
to the birthday book specification (when possible).

1. The conjunction of all axioms is satisfiable (axioms_sat).
2. The initial state satisfies each and every invariant (_sat_). As an example we have:

birthdayBookInit_sat_birthdayBookInv :-
birthdayBookInit(Known,Birthday) &
birthdayBookInv(Known,Birthday).

If there’s no initial state, then the proof obligation checks that each invariant is satisfiable.
3. Each operation is satisfiable and can change the state (_is_sat). For example:

addBirthday_is_sat :-
addBirthday(Known,Birthday,Name_i,Date_i,Known_,Birthday_) &
[Known,Birthday] neq [Known_,Birthday_].

If the operation doesn’t change state variables, then the proof obligation checks satisfia-
bility of the operation. For example:
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findBirthday_is_sat :-
findBirthday(Known,Birthday,Name,Date).

4. All applyTo predicates appearing as a functional predicate in a foreach constraint are
well-defined (_is_wd_). More precisely, if applyTo(F,X,Y) appears in a foreach con-
straint whose quantification variable is X, then the verification condition ensures that X
belongs to the domain of F.

5. Invariance lemmas: each operation preservers each and every invariant (_pi_). For example:

addBirthday_pi_birthdayBookInv :-
% here conjoin other ax/inv as hypothesis if necessary
neg(
birthdayBookInv(Known,Birthday) &
addBirthday(Known,Birthday,Name,Date,Known_,Birthday_) implies
birthdayBookInv(Known_,Birthday_)

).

6. Theorems: the proofs of user-defined theorems are included as verification conditions.
Since {log} will try to prove their unsatisfiability, proofs must encode unsatisfiable formu-
las.

The most important verification conditions are the invariance lemmas. However, if the
operation or the invariant are unsatisfiable the invariance lemma will trivially hold. Hence, the
VCG also generates the first two satisfiability verification conditions.

14 Control predicates

{log} provides a number of built-in predicates that can be used by the user to interact with
the control mechanisms of the interpreter. We will distinguish these predicates into three cate-
gories: general predicates, predicates for controlling constraint solving, predicates for execution
monitoring.

14.1 General

• call(G), call(G,C): to execute goal G, possibly getting constraint C.
• solve(G): same as call(G) but all constraints possibly generated by G are immediately

solved; moreover, G is always executed in solver mode (cf. Section 3.7). For example:

{log}=> diff({1,2,3},{2},S).

makes {log} to answer

S = {1,3/_N1} Constraint: subset(_N1,{1,2,3}), set(_N1), 2 nin _N1

while by issuing

{log}=> solve(diff({1,2,3},{2},S)).
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you get the answer

S = {1,3}

As another example (comparing call and solve):

{log}=> mode(solver).
{log}=> call(inters(X,{a,b},Z))& write(Z).
{log}=> solve(inters(X,{a,b},Z))& write(Z).

generate the same answers, but the call to write(Z) in the second goal prints the internal
representation of an uninitialized variable (e.g., 45554) since the constraint inters is
automatically delayed if the third argument and one of the first two are uninitialized
variables, while write(Z) in the third goal prints {a,b}, i.e., the first solution for Z.

• G!: to make execution of goal G deterministic.

Comments about G!. {log} does not provide the general ‘cut’ facility of Prolog. In {log},
however, it is possible to make the execution of a goal G determinate by putting the cut symbol
just after the goal G. G!, where G is any {log} goal, is executed exactly as G except that when
G succeeds all (possibly none) alternative solutions for G are discarded. Thus, only the first
solution for G is computed: if backtracking should later return to this goal, no further solutions
will be found.

As an example:

{log}=> X in {a,b}!.
X = a
Another solution? (y/n)y
no

whereas the same goal without ‘cut’ would return the two distinct solutions X = a and X = b.
Note that the ‘cut’ operator applies to any {log} goal, including disjunctions, conjunctions

(e.g., (X in {a,b} & Y in {c,d})!), RUQs, user and system defined predicates.

14.2 Constraint solving

• delay(G,C), where G and C are {log} formulas: to delay execution of G until either C
becomes true or the computation ends

• strategy(S): to change goal predicate selection strategy:
– S = cfirst: select constraints first
– S = ordered: select all predicates in the order they occur
– S = cfirst(list of preds): select predicates in list of preds just after constraints.

Default selection strategy: cfirst.

• noirules/0, irules/0: to deactivate/activate inference rules (default: irules)

• noneq elim/0, neq elim/0: to deactivate/activate elimination of neq-constraints (default:
neq elim).
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Comments about strategy(S). Predicates in a goal are executed left-to-right in the order they
appear in the goal, except that atomic constraints are executed before any other non-constraint
atoms occurring in the goal. This default strategy can be changed by using the built-in predicate
strategy as shown in the following examples.

Given the goal:
{log}=> write(b) & write(X) & X in {a}.

we get as answer (using the default strategy cfirst):
ba
X = a

that is, the constraint X in {a} is executed first (thus binding X to a), then the other predi-
cates, write(b) and write(X), are taken into account. Conversely, if we give first the goal
strategy(ordered), then the same goal as above will produce the answer (_5044 is the system
generated name of the uninitialized variable X):

b_5044
X = a

since predicates are executed in the exact order they occur in the goal21. Finally, if we give first
the goal strategy(cfirst([nl])) then any predicate nl (“new line”) possibly occurring in the
next goals will be executed just before any other non-constraint predicates. For example:

{log}=> write(b) & write(X) & nl & X in {a}.

we get as answer

ba
X = a

where the blank line before ba is caused by the execution of nl before that of the built-in
predicates write.

Note that call(G) and solve(G) are dealt with as non-constraint predicates, even when G
is a constraint. Then call and solve can be used to influence the execution order of predicates
in the formula. For example in:

solve(G1) & solve(G2)

G1 is definitely executed before G2.

14.3 Execution monitoring

• trace(Mode): to activate constraint solving tracing:
– Mode = sat: general tracing
– Mode = irules: inference rules tracing

• notrace/0: to deactivate constraint solving tracing (default)
• time(G,T): to get the CPU time T (in milliseconds) required to solve the {log} goal G

(using .
21With the exception of equalities which are in any case considered before any other non-constraint predicate.
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15 Prolog-{log} communication

15.1 From Prolog to {log}
Main predicates

• setlog(+Goal,+Timeout,-OutConstrList,-Res,+OptList): to execute a {log} goal Goal
with an output constraint list OutConstrList and a timeout Timeout (an integer constant
specifying an amount of time in milliseconds), with a (possibly empty) list OptList of
execution options. The Res argument is used to specify how execution of Goal terminates:
success, if Goal terminates successfully within the time Timeout; time_out, if Goal does
not terminate within the time Timeout; maybe, if Goal terminates successfully within the
time Timeout but the computed result is not guaranteed to be reliable.
The possible execution options are those specified by the built-in control predicates men-
tioned in the previous sections (in particular in sections 11 and 14). A complete list of the
available execution options can be found in Appendix A. As an example, the following
goal:

?- setlog(X in int(1,5),1000,C,R,
[int_solver(clpfd),nolabel]).

requires the goal X in int(1,5) to be executed, with a 1000 millisecond timeout, using
CLP(FD) as the integer solver but disabling the final automatic labeling step (see Sect.
7.1.1).
Options type_check and groundsol have no effect with setlog/5. If they are needed,
then use predicates setlog_str or setlog_tc, as described below.

• setlog(+Goal,+Timeout,-OutConstrList,-Res,+try([OptList1,...,OptListn]): as
setlog/5 in the previous item, but possibly attempting goal Goal as many times as the
number of OptListi occurring in the argument of term try. Precisely, for each i ∈ 1..n−1,
if the call:

setlog(Goal,Timeout,OutConstrList,OptsLsti)

terminates with a timeout, then the call:

setlog(Goal,Timeout,OutConstrList,Res,OptsLsti+1)

is attempted next; otherwise, the initial call terminates. As an example, the following
goal:

?- setlog(dom(R,S) & ran(R,{1/S}),2000,C,Res,
try([[],[noran_elim]])).

requires the goal dom(R,S) & ran(R,{1/S}) to be executed, the first time, with a 2000
millisecond timeout and no execution options enforced; since this call terminates with a
timeout, then the goal dom(R,S) & ran(R,{1/S}) is executed again, with a 2000millisec-
ond timeout but activating the noran_elim option.
Note that, when setlog/5 is called with the try option, the total execution time might be
as large as T * n, where n is the number of OptsList occurring in the try list.
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Also, note that when using any of the execution options noran_elim, nocomp_elim,
noneq_elim, the solver is no longer guaranteed to be complete; that is, given a goal
G, if the answer is no, then G is surely unsatisfiable; otherwise, it is not guaranteed, in
general, that G is satisfiable and the answer we get may be unreliable. In the latter case,
the Res argument of the setlog/5 predicate will be bound to the constant maybe.

• setlog(+Goal,+Timeout,-OutConstrList,-Res,try(prover_all)): is implemented as
the following call to the setlog/5 predicate.

setlog(+Goal,+Timeout,-OutConstrList,-Res,try([s1 , . . . , sn]))

where {s1 , . . . , sn} = P(prover_all_strategies). That is, all the possible combinations
of the current value of prover_all_strategies are attempted, including passing in no
options (see also Sect. 11.3).

• setlog(+Goal,+Timeout,-OutConstrList,-Res,try(prover_all_single)): is imple-
mented as the following call to the setlog/5 predicate.

setlog(+Goal,+Timeout,-OutConstrList,-Res,try([[s1], . . . , [sn]]))

where [s1 , . . . , sn] is the current list of options returned by prover_all_strategies.
• setlog(+Goal,+Timeout,-OutConstrList,-Res,+tryp([OptLst1,...,OptLstn]): the

first four arguments work as in setlog/5; each OptLsti is as above. In this case {log}
creates n (operating system) threads each of which executes Goal with one of OptLsti as
the active execution options. The execution of the command terminates as soon as one
thread terminates. This command is incompatible with non-determinism. Then, if the
goal is satisfiable only the first solution is returned.

• setlog(+Goal,+Timeout,-OutConstrList,-Res,tryp(prover_all)): is implemented
as setlog/5 with option try(prover_all) (see above) but execution is parallelized as
in the previous case.

• setlog(+Goal,+Timeout,-OutConstrList,-Res,tryp(prover_all_single)): is imple-
mented as setlog/5 with option try(prover_all_single) (see above) but execution is
parallelized as in the previous case.

• setlog(+Goal,+Timeout,-OutConstrList,-Res): is exactly as setlog/5 but using a
default value for the fifth argument, namely:

try([[int_solver(clpfd)],[int_solver(clpq),final],
[noirules],[noneq_elim],[noran_elim]]).

• setlog(+Goal,-OutConstrList,-Res): is implemented as the following call to thesetlog/5
predicate.

setlog(Goal,∞,OutConstrList,Res,[])

That is, setlog/3 is equivalent to a call to setlog/5with an infinite timeout and an empty
list of execution options.

• setlog(G,OutCLst): is implemented as the following call to the setlog/3 predicate.

setlog(Goal,OutConstrList,_)
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• setlog(G): is implemented as the following call to the setlog/2 predicate.

setlog(Goal,_)

• rsetlog(+Goal,+Timeout,-OutConstrList,-Res,+OptList): same as setlog/5, but
with “reification” on Res; specifically, if the execution of goal G terminates with fail-
ure, then Res is unified with failure; otherwise, Res is unified with either success,
time_out or maybe as with setlog/5.

• setlog: to enter/re-enter the {log} interactive environment.
• setlog_str(+GoalString,+PrologVars,+TimeOut,-OutConstrList,-Res,+OptList):
GoalString is a {log} goal encoded as a string; PrologVars is a list of terms of the form
Name = Var, where Name is an atom describing a variable name in GoalString and Var is
a variable; and OutConstraintList, Res and OptList are as in setlog/5. GoalString is
turned into a term but, in some way, if X is a variable in GoalString and there’s an equality
’X’ = A in PrologVars then X is substituted by A in GoalString before the execution of
the goal is started. After this, the goal is executed as in setlog/5.
For example:

?- setlog_str(
"X = 1 & un({1},{2},V) & un(V,Q,E)",
[’X’ = A,’V’ = V,’Q’ = X,’E’ = E],
10000,C,R,[groundsol]).

produces as a result:

A = 1, V = E, E = {1, 2}, X = {},
C = [], R = success.

The example is clear on the effect of the PrologVars parameter. Besides, as can be seen,
setlog_str/6 is able to correctly execute when groundsol (and type_check, although
not shown) is passed as an option.
If the user doesn’t want to write down the list for PrologVars, (s)he can use Prolog’s
term_string/3:

?- G = "X = 1 & un({1},{2},V) & un(V,Q,E)",
term_string(_,G,[variable_names(VN)]),
setlog_str(G,VN,10000,C,R,[groundsol]).

In this case, if the user needs to reuse some variable in GoalString, then (s)he can use
some member predicate as follows:

?- G = "X = 1 & un({1},{2},V) & un(V,Q,E)",
term_string(_,G,[variable_names(VN)]),
setlog_str(G,VN,10000,C,R,[groundsol]),
member(’V’ = V,VN),
write(’\nThe result of the first union is: ’), write(V), nl.

• setlog_str(+GoalString,-EqsString,+TimeOut,-ConstrString,-Res,+OptList): sa-
me as setlog_str/6 above but in this case the predicate doesn’t receive PrologVars but
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instead it will return in EqsString a (possibly empty) list of strings each of which is of the
form Var=termwhere Var is one of the free variables of GoalString. These equalities are
the equalities that Prolog would normally output as part of any predicate answer. This
means that no binding of terms to variables will be returned except for those in EqsString.
In the same sense, ConstrString is a list of strings each of which is one of the constraints
that {log} would normally return as part of its answer.
For example:

?- setlog_str(
"X = 1 & un({1},{2},V) & un(V,Q,E)",
Eqs,10000,C,R,[groundsol]).

produces as a result:

Eqs = ["’X’=1", "’V’={1,2}", "’Q’={}", "’E’={1,2}"],
C = [], R = success.

• setlog_str(+GoalString,+PrologVars,-OutConstrList,-Res)
setlog_str(+GoalString,-EqsString,-ConstrString,-Res): are implemented as the
following call to the setlog_str/6 predicate.

setlog_str(GoalString,Vars_or_Eqs,∞,Constr,Res,[])

• setlog_str(+GoalString,+PrologVars,-OutConstrList)
setlog_str(+GoalString,-EqsString,-ConstrString): are implemented as the follow-
ing call to the setlog_str/4 predicate.

setlog_str(GoalString,Vars_or_Eqs,Constr,_)

• setlog_str(+GoalString,+PrologVars)
setlog_str(+GoalString,-EqsString): are implemented as the following call to the
setlog_str/4 predicate.

setlog_str(GoalString,Vars_or_Eqs,_,_)

• rsetlog_str(+GoalString,+PrologVars,+TimeOut,-OutConstrList,-Res,+OptList)
rsetlog_str(+GoalString,-EqsString,+TimeOut,-ConstrString,-Res,+OptList): sa-
me as setlog_str/6 but with “reification” on Res; see rsetlog/5 for more details.

• setlog_tc(+GoalString,+PrologVars,-OutConstrList)
setlog_tc(+GoalString,-EqsString,-ConstrString): are implemented as the follow-
ing call to the setlog_str/6 predicate.

setlog_str(GoalString,Vars_or_Eqs,∞,Constr,_,[type_check])

Other predicates. Besides the already mentioned predicates setlog consult/1 and
consult lib/0 (see Sect. 2), {log} provides a few other built-in predicates that can be called
directly from the Prolog environment:

• setlog_clause(Cl): to dynamically add a {log} clause Cl to the current {log} program
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• setlog_config(list_of_params): to modify some {log} configuration parameters di-
rectly from the Prolog environment. Each parameter in list_of_params can be:

– path(Path): Path is the pathname of the directory to be used to prefix the name of
any file which is loaded in {log} through the consult predicates (default: ’.’)

– rw_rules(File): File is the name of the file containing the “filtering rules” (default:
’setlog_rules.pl’);

– strategy(S): see the control predicate strategy in Sect. 14.

15.2 From {log} to Prolog

General

• prolog_call(G): to execute any Prolog goal G from {log}.

Specific Prolog built-in predicates The following Prolog built-in predicates are directly avail-
able in {log} for user convenience:

- nl/0
- ground/1
- var/1
- nonvar/1
- name/2
- functor/3
- arg/3
- =../2
- ==/2
- \==/2
- @</2
- @>/2
- @=</2
- @>=/2

16 The {log} library

A number of common predicates, dealing with sets and lists, which are not implemented as
built-in predicates by the interpreter, are provided as user defined predicates by the standard
{log} library setloglib.slog. The file setloglib.slog can be loaded as part of any {log}
program using the built-in predicate consult lib/0.

Below we list most of the predicates currently contained in setloglib.slog.

Dealing with sets

• binters(S,R): generalized intersection: R is the intersection of all elements of the set of
sets S

• bun(S,R): generalized union: R is the union of all elements of the set of sets S
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• dint to set(A,B,S): same as int to set/2 but delayed if interval limits are unknown
• eq(T1,T2): syntactic unification between terms T1 and T2
• int to set(I,S): S is the set of all elements of the interval I
• list to set(L,S): S is the set of all elements of the list L
• powerset(S,PS): powerset (PS = 2S)
• set to list(S,L): S is a set and L is a list containing all and only the elements of S,

without repetitions (all possible permutations of L).

Dealing with lists

• extract(S,L,NewL): S is a set of integer numbers, L is a list of elements of any type, and
NewL is a list containing the i-th element ofL, for all i inS (e.g., extract({4,2},[a,h,g,m,t,r],L)
returns L = [h,m])

• drop(N,L,NewL): NewL is Lwith its first N elements removed
• filter(L,S,NewL): L is a list, S is a set, and NewL is a list containing the elements of L that

are also elements of S (e.g., filter([a,h,g,m,t,r],{m,h,s},L) returns L = [h,m])
• prefix(P,L): list P is a prefix of list L
• sublist(Sb,L): list Sb is a sublist of list L
• take(N,L,NewL): list NewL consists of the first N elements of list L.
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A {log} commands and execution options

The following commands can also be used as execution options.

• comp_elim/nocomp_elim (default: comp_elim): to activate/deactivate complete rewriting
of comp constraints; using nocomp_elimmay make the solver incomplete.

• fix_size/nofix_size (default: nofix_size): to activate/deactivate fixed set cardinality
mode for size constraint solving.

• int_solver(S), S = clpq | clpfd (default: clpq): to select the integer constraint solver.
• irules/noirules (default: irules): to activate/deactivate inference rules.
• label/nolabel (default: label): to activate/deactivate labeling on integer variables.
• mode(M), M = prover | solver | prover([opt_1,...,opt_n]): to change the solver oper-

ation mode. In turn, opt_i is a prover option (see below).
• neq_elim/noneq_elim (default: neq_elim): to activate/deactivate neq elimination; using
noneq_elimmay make the solver incomplete.

• ran_elim/noran_elim (default: ran_elim)): to activate/deactivate complete rewriting of
ran constraints; using noran_elimmay make the solver incomplete.

• strategy(Str), Str = cfirst | ordered | cfirst(list_of_preds): to change goal
predicate selection strategy to Str

• show_min/noshow_min (default: noshow_min): to activate/deactivate showing minimal
set cardinalities making the input formula satisfiable

• trace(T)/notrace, T= sat | irules (default: notrace): to deactivate/activate constraint
solving tracing

• type_check/notype_check (default: notype_check): to activate/deactivate {log} type-
checking (see Sect. 12).

• groundsol/nogroundsol (default: nogroundsol): to activate/deactivate the computation
of ground solutions (see Sect. 3.2).

The prover options are those listed in Table 10. Any prover option is also an execution
option.


	Introduction
	Using {log}
	Loading {log} libraries
	Dealing with {log} programs
	Asking for help

	Solving formulas with extensional sets
	Set operators
	Answers to queries and the groundsol predicate
	Considerations on set membership and not membership
	Introducing formulas
	Negation and the let construct
	Proving unsatisfiability (i.e., proving theorems)
	Modes of operation

	Solving formulas with binary relations
	Relational operators
	Partial functions
	Decidable formulas involving binary relations

	Intensional sets
	Solving formulas with Restricted Intensional Sets
	Parameters and the functional section
	Parameters and control expressions
	Encoding sets of structured elements
	Safe patterns
	Enumerating the elements of a RIS
	Automated proofs

	General intensional set terms

	Quantifiers
	foreach and exists
	forall
	General existential quantifiers

	Solving formulas including integer numbers
	CLP(FD)
	Finite domains
	Labeling

	CLP(Q)
	Which integer solver should be used?

	Cardinality constraints
	Decidable formulas involving cardinality constraints
	The solved form of formulas involving size constraints

	Finite integer intervals
	Decidable formulas involving integer intervals
	Defining set operators using intervals

	Aggregation functions
	Minimum and maximum of a set
	Sum of a set
	Sum of an array

	Using {log} as an automated theorem prover
	Alternative rewrite rules and execution options
	Parallel execution
	Other user commands

	Types in {log}
	The type system
	Integers
	Character strings
	Basic types
	Enumerated types
	Sum types
	Product types
	Set types
	Types for binary relations and partial functions

	Type declarations
	Typing RUQ and REQ
	Typing user-defined predicates
	Typing polymorphic operators
	Running formulas in type-checking mode
	groundsol when typechecking is active
	Proving goals involving finite types
	Admissible terms in type-checking mode
	User commands to work with types

	Specifying and verifying state machines
	The specification of the birthday book problem
	Parameters, axioms and theorems
	Execution of state machines
	Automatic generation of verification conditions
	Analyzing undischarged verification conditions
	Counterexamples of undischarged verification conditions
	The findh command family

	Verification conditions generated by the VCG

	Control predicates
	General
	Constraint solving
	Execution monitoring

	Prolog-{log} communication
	From Prolog to {log}
	From {log} to Prolog

	The {log} library
	{log} commands and execution options

