
JSetL User’s Manual
Version 3.0

Gianfranco Rossi∗, Roberto Amadini and Andrea Fois
Dipartimento di Scienze Matematiche, Fisiche e Informatiche

Università di Parma

Parma (Italy)

March 3, 2020

Abstract

This manual describes JSetL 3.0, a Java library that offers a number of facilities
to support declarative programming like those usually found in constraint logic pro-
gramming languages: logical variables, list and set data structures (possibly partially
specified), unification, constraint solving over integers and sets, nondeterminism. JSetL
is intended to be used as a general-purpose tool, not devoted to any specific application.
The manual describes all the features of JSetL and it shows, through simple examples,
how to use them.

JSetL has been developed at the Department of Mathematics and Computer Science
of the University of Parma (Italy). It is completely written in Java. The full Java code
of the JSetL library, along with sample programs and related material, is available at
the JSetL WEB page http://www.clpset.unipr.it/jsetl/.

∗Correspondence to: Gianfranco Rossi, Dipartimento di Scienze Matematiche, Fisiche e Infor-
matiche, Università di Parma, Parco Area delle Scienze, 53/A, I-43124 Parma, Italy. E-mail address:
gianfranco.rossi@unipr.it

i

http://www.clpset.unipr.it/jsetl/

Contents

1 Introduction 1

2 JSetL class hierarchy 2

3 Logical variables: the class LVar 3
3.1 Constructors . 4
3.2 General utility methods . 5
3.3 Constraint methods . 6

4 Logical lists: the class LList 7
4.1 Constructors . 7
4.2 Creating new (bound) logical lists . 8
4.3 General utility methods . 9

4.3.1 Basic methods . 9
4.3.2 Logical collection methods . 10

4.4 Constraint methods . 11

5 Logical pairs: the class LPair 12
5.1 Constructors . 12
5.2 General utility methods . 13
5.3 Constraint methods . 13

6 Logical sets: the class LSet 13
6.1 Constructors . 14
6.2 Creating new (bound) logical sets . 14
6.3 General utility methods . 15

6.3.1 Basic methods . 15
6.3.2 Logical collection methods . 15

6.4 Constraint methods . 16

7 Integer logical sets: the class IntLSet 18
7.1 Constructors . 18
7.2 General utility methods . 19
7.3 Constraint methods . 20

8 Logical binary relations: the class LRel 20
8.1 Constructors . 21
8.2 Creating new (bound) logical binary relations 21
8.3 General utility methods . 22
8.4 Constraint methods . 22

9 Logical maps: the class LMap 23
9.1 Constructors . 23
9.2 Creating new (bound) logical maps . 24
9.3 General utility methods . 24
9.4 Constraint methods . 25

ii

10 Restricted intensional sets: the class Ris 25
10.1 Constructors . 25
10.2 General utility methods . 26
10.3 RIS methods . 28
10.4 Constraint methods . 29

11 Integer logical variables: the class IntLVar 29
11.1 Constructors . 30
11.2 General utility methods . 31
11.3 Integer logical expressions . 32
11.4 Constraint methods . 33

12 Integer set logical variables: the class SetLVar 35
12.1 Constructors . 36
12.2 General utility methods . 38
12.3 Integer set expressions . 38
12.4 Constraint methods . 39

13 Boolean logical variables: the class BoolLVar 42
13.1 Constructors . 42
13.2 General utility methods . 43
13.3 Boolean logical expression . 43
13.4 Constraint methods . 43

14 Constraints: the class Constraint 44
14.1 Constructors . 45
14.2 Static members . 46
14.3 General utility methods . 46
14.4 Global constraints . 46
14.5 Meta-constraints . 47
14.6 Constraint methods in other classes . 47
14.7 Constraint-solving methods . 48
14.8 Control methods . 48

15 Constraint solving: the class Solver 48
15.1 Constructor . 49
15.2 Posting and inspecting constraints . 49
15.3 Checking constraint satisfiability . 50
15.4 Getting solutions . 50
15.5 Restrictions . 52
15.6 Optimization Options . 52

16 User-defined constraints 53
16.1 The class NewConstraints . 53
16.2 Implementing new constraints . 54
16.3 Exploiting nondeterminism . 56

References 57

iii

A Data structures for finite domain modeling 57
A.1 The class Interval . 58
A.2 The class MultiInterval . 60
A.3 The class SetInterval . 62

B Data structures for dealing with labeling 65
B.1 Labeling on integer logical variables . 65
B.2 Labeling on integer set logical variables . 69

iv

1 Introduction

JSetL is a Java library that combines the object-oriented programming paradigm of Java
with valuable concepts of CLP languages [6], such as logical variables, lists (possibly partially
specified), unification, constraint solving, nondeterminism. The library provides also sets
and set constraints, like those found in CLP(SET) [3] and subsequent extensions [2, 1].

Unification may involve logical variables, as well as list and set objects (“set unifica-
tion”). Set objects can be defined either extensionally, i.e., by enumerating their elements,
or intensionally, i.e., by providing a property that all elements must satisfy. Set objects can
be partially specified in that they can contain unbound variables, both as set elements and
as part of the set itself.

Constraints concern basic set-theoretical operations (e.g., membership, union, intersec-
tion, etc.), as well as equality, inequality and comparison operations over integers. Constraint
solving over integers uses the well-known finite domain (FD) constraint solving techniques.
Constraint solving over sets uses both the efficient finite set (FS) constraint solving tech-
niques of [5], for completely specified sets of integers, and the less efficient but more general
and complete constraint solving procedure of CLP(SET) [3] for general (possibly partially
specified and nested) sets of elements of any type.

Nondeterminism (using choice points and backtracking) is exploited both by specific
methods for solution search (namely, the labeling methods), as well as by constraints over
general sets, e.g., set unification, set union, etc..

Finally, JSetL allows the user to define new constraints and to deal with them as the
built-in ones.

How to get JSetL

JSetL has been developed at the Department of Mathematics of the University of Parma
(Italy). It is completely written in Java. The full Java code of the JSetL library, along
with sample programs and related documents, is available at http://www.clpset.unipr.

it/jsetl/.
The library is free software; one can redistribute it and/or modify it under the terms of

the GNU General Public License.

How to use JSetL

The library is carried out as a Java package, and as such it is subject to the common rules
of use defined by the language. The classes of the library must be saved into a folder named
jsetl. To use JSetL in a program it is necessary to import the library by inserting the
statement

import jsetl.*;

at the beginning of the source file. JSetL must be a sub-folder of the folder in which the
classes that import JSetL are saved. Otherwise, the path from root to the library folder
must be added to the variable CLASSPATH.

Credits

The first implementation of JSetL was carried out by Elisabetta Poleo, during her “Laurea”
Thesis in 2002 under the supervision of Gianfranco Rossi. The library code was subsequently
fixed by Elio Panegai and Gianfranco Rossi. In 2008 Federico Bergenti joined the JSetL
Team until 2014. In the years 2010–2012 Luca Chiarabini worked at the development of
programming examples using JSetL. In 2011 Roberto Amadini contributed to the design and

1

http://www.clpset.unipr.it/jsetl/
http://www.clpset.unipr.it/jsetl/

implementation of part of the JSetL constraint solver. At present, Andrea Fois is deeply
reviewing the whole implementation of JSetL and developing some new extensions of it.

Since its beginning, several students, under the supervision of Gianfranco Rossi, have
helped us to improve the library, adding new functionalities and enhancing the existing ones:
(in chronological order) Nadia Toledi, Delia Di Giorgio, Roberto Amadini, Daniele Pandini,
Michele Giacomo Filippi, Luca Pedrelli, Alberto Dalla Valle, Lucia Guglielmetti, Fabio
Biselli, Andrea Longo, Riccardo Zangrandi, Michele Giacobini, Federica Belli, Lorenzo Fu-
rini, Alessio Bertolotti, Davide Allevi, Gianluca Lutero, Lorenzo De Santis, Andrea Guerra,
Andrea Fois, Michael Cobianchi, Marco Ghezzi, Francesco Vetere, Giulia Magnani.

2 JSetL class hierarchy

In JSetL, every logical object (e.g., a logical variable, a logical set, etc.) is an instance of the
class LObject. This class provides general utility methods that are common to every logical
object, such as methods to check whether an object is bound or not, to set its external name,
and so on.

LObject has two subclasses, corresponding to two different kinds of logic objects:

• LVar, which represents (general) logical variables whose values can be objects of any
type. LVar provides three subclasses that may be used by the user to post type-specific
constraints:

– BoolLVar, representing boolean logical variables, i.e., logical variables whose val-
ues are either true or false; this class provides methods for posting constraints over
boolean variables, such as logical conjunction, disjunction, implication, negation,
etc.

– IntLVar, representing integer logical variables, i.e., logic variables whose values
are integers; this class provides additional methods for posting constraints over
integers, such as multiplication, subtraction, module, etc.

– SetLVar, representing set logical variables, i.e., logic variables whose values are
bounded sets of integers; this class provides additional methods for posting con-
straints over sets, such as equality, union, intersection, etc.

• LCollection, which represents (general) unbounded collections of values of any kind
(even non-homogenous in type). The user never creates instances of LCollection;
instead he/she can use one of its subclasses.

– LList, representing logical lists, i.e., logical collections whose values are lists of
values of any kind, including other (possibly unbound) logical objects (in partic-
ular, other logical lists). LList provides also a subclass:

∗ LPair, representing logical pairs, i.e., logical objects whose values are pairs
of values of any kind, including other (possibly unbound) logical objects.

– LSet, representing logical sets, i.e., logical collections whose values are sets of val-
ues of any kind, including other (possibly unbound) logical objects (in particular,
other logical sets). This class provides methods for posting constraints over set
variables, such as equality, membership, union, intersection, etc. LSet provides
also a number of subclasses that allow the user to specify constraints on specific
kinds of sets (namely, sets of integer numbers, intensional sets, binary relations,
maps).

2

∗ IntLSet, representing integer logical sets, i.e., logic sets whose elements are
either integer values or (possibly unbound) integer logical variables (i.e., in-
stances of IntLVar).

∗ LRel, representing binary relations, i.e., logical sets whose elements are (log-
ical) pairs of elements of any kind; this class provides additional methods for
posting constraints over binary relations, such as domain, range, composition,
etc. LRel provides also a subclass:

· LMap, representing maps (or partial functions), i.e., binary relations where
all pair first components are all distinct from each other.

∗ Ris, representing Restricted Intensional Sets, i.e., logical sets whose elements
(of any kind) are specified by providing a property that they must satisfy in
order to belong to the set.

All exceptions defined in the library are located in the package jsetl.exception. Those
exceptions are listed below.

• Fail: unchecked exception raised when a constraint is found to be unsatisfiable, to
start the backtracking procedure.

• Failure: checked exception raised when a constraint is found to be unsatisfiable and
there are no more open choice points, meaning that no solution can be found.

• InitLObjectException: unchecked exception raised when a logical object should be
unbound but it is found to be bound to some value.

• NotDefConstraintException: unchecked exception raised when the solver tries to
solve a not defined constraint (neither built-in nor user-defined).

• NotInitLObjectException: unchecked exception raised when a variable that should
be bound to some value is found to be unbound.

• NotPFunException: unchecked exception raised when the created LMap is not a partial
function.

• NotValidDomainException: unchecked exception raised when a not valid IntLVar or
SetLVar domain is found.

• UnsupportedHeuristicException: unchecked exception raised when a labeling heuris-
tic is not supported by the method that is asked to use it.

All parameters of all methods (and constraints) in the library should not be null, unless
they are overriding Object methods that allow null values. If a parameter is null, an
exception NullPointerException is raised; if a collection or array of values is passed as
parameter, none of the values can be null, otherwise an exception NullPointerException

is raised. For more info on nullable and non-null parameters and return values see the
Javadoc documentation.

3 Logical variables: the class LVar

Logical variables represent unknowns. As such they have no modifiable value stored in them,
as ordinary programming languages variables have. Conversely, one can associate values to
logical variables through constraints, involving logical variables and values from some specific
domains.

3

When the domain of a variable is restricted to a single value, we say that the variable is
bound to (or instantiated with) this value. Otherwise, the variable is unbound. With a little
abuse of terminology, we say that the value associated with a bound variable x is the value
of x.

The equality constraint, in particular, allows a precise value to be associated to a logical
variable. For example, if x is a logical variable ranging over the domain of integers, the
equality x = 3 forces x to be bound to the value 3. However, the same result can be
obtained through other relations, e.g., x < 4 ∧ x > 2.

The value of a logical variable is immutable. That is it can not be changed, e.g. by an
assignment statement.

A logical variable also has an external name. The external name is a string value which
can be useful when printing the variable and the possible constraints involving it.

In JSetL, a logical variable is an instance of the class LVar. This class provides con-
structors for creating logical variables and a number of simple methods for testing and
manipulating logical variables, as well as basic constraints over logical variables (namely,
equality and inequality, membership and not membership).

3.1 Constructors

LVar()

LVar(String extName)

Construct an unbound logical variable, with default external name (resp., with external
name extName).

LVar(Object o)

LVar(String extName, Object o)

Construct a (bound) logical variable, with default external name (resp., with external
name extName), and value o. o can be of any type, but a String for the one parameter
constructor (in fact, in such case, the LVar(String extName) constructor is called).
Same as to create an unbound logical variable x and to post and solve the constraint
x.eq(o).

LVar(LVar lv)

LVar(String extName, LVar lv)

Construct a logical variable, with default external name (resp., with external name
extName), equivalent to the logical variable lv. Same as to create an unbound logical
variable x and to post and solve the constraint x.eq(lv).

Remarks

• If extName is omitted, a default external name "Nn" is assigned to the variable auto-
matically in which n is a progressive generated number.

• Two logical variables x and y are equivalent if they have been (successfully) unified,
e.g., by x.eq(y). Equivalent variables are dealt with as they were the same variable.
If x and y are unbound, and x is unified to y, both x and y remain unbound; if later
on, x is bound to some value o, then y becomes bound to the same value o.

Example 1

• Create an unbound logical variable x (with default external name):

LVar x = new LVar();

4

• Create an unbound logical variable y with external name "y":

LVar y = new LVar("y");

• Create a logical variable z, with external name "z", bound to the integer value 2:

LVar z = new LVar("z", 2);

• Create a logical variable v equivalent to the logical variable x:

LVar v = new LVar(x);

3.2 General utility methods

The class LVar provides a number of utility methods that allow the user to inspect a logical
variable (e.g., to test if it is bound), to get and set its external name, to print its value, and
so on.

LVar clone()
Returns a copy of this logical variable.

boolean equals(Object o)

Returns true if this logical variable is equal to the object o. If o is a logical variable, x
and o are equal if either they are the same object (either bound or unbound), or they
are equivalent logical variables (either bound or unbound), or they are distinct logical
variables but bound to equal values. If o is not a logical variable, x and o are equal if
x is bound to a value equal to o.

String getName()
Returns the external name associated with this logical variable.

Object getValue()
Returns the value of this logical variable if it is bound, null otherwise.

boolean isBound()
Returns true if this logical variable is bound, false otherwise.

boolean isGround()
Returns true if this logical variable is ground, false otherwise. A logical variable is
ground if it is bound to a non-logical object (regardless of whether this object contains
logical objects or not) or if it is bound to a ground logical object (in particular, a
ground logical list or set).

void output()
Prints ’ ’ followed by the external name of this logical variable, followed by ’=’,
followed by the value of this logical variable if it is bound, or by "unknown" if it is
unbound (e.g., x = 3 or y = unknown).

LVar setName(String extName)

Sets the external name of this logical variable to extName and returns this logical
variable.

LVar setValue(Object o)

If this logical variable is unbound, binds it to the value o (same as to post and solve
the constraint this.eq(o)) and returns this logical variable. If this logical variable is
already bound, raises an exception InitLObjectException.

5

String toString()
Returns the string corresponding to the value of this logical variable if it is bound;
otherwise, returns the string " extName", where extName is the external name of this
logical variable.

Example 2 (refer to declarations of Example 1)

• Test equals:

x.equals(x); // --> true

z.equals(2); // --> true

x.equals(y); // --> false

x.equals(v); // --> true

• Output bound/unbound logical variables:

x.output(); // --> _N1 = unknown

y.output(); // --> _y = unknown

z.output(); // --> _z = 2

• Convert to string:

x.toString(); // --> _N1

y.toString(); // --> _y

z.toString(); // --> 2

3.3 Constraint methods

Constraints (see Sect. 14) can be posted over logical variables. In particular, the class
LVar provides methods for generating equality, inequality, membership and not membership
constraints.

Constraint eq(Object o)

Returns the atomic constraint this = o, that unifies this logical variable with the
object o. In particular, if o is an object other than a logical variable, and this variable
is unbound, this variable becomes bound to o after the constraint has been solved.

Constraint neq(Object o)

Returns the atomic constraint this 6= o, that requires this logical variable to be
different from the object o.

Constraint in(LSet ls)

Constraint in(Set<?> s)

Return the atomic constraint this ∈ ls (resp., this ∈ s), that requires this logical
variable to be a member of the logical set ls (resp., of the Java generic set s). When
solved, this constraint will nondeterministically unify this logical variable with each
value in ls (resp., in s). The constraint will succeed if at least one unification succeeds.

Constraint nin(LSet ls)

Constraint nin(Set<?> s)

Return the atomic constraint this 6∈ ls (resp., this 6∈ s), that requires this logical
variable not to be a member of the logical set ls (resp., of of the Java generic set s).

6

4 Logical lists: the class LList

A logical list (or, simply, a l-list) l is a special kind of logical object whose value is a pair
〈elems, tail〉, where elems (the list value) is a list of n objects of arbitrary types (n ≥ 0),
and tail is either an empty or an unbound l-list, representing the rest of l. When elems is
empty (i.e., n = 0), l is the empty l-list and we use [] to denote it. When elems is not
empty (i.e., n > 0): if tail is the empty l-list, we say that l represents a closed list and we
use the (abstract) notation [e0, . . . , en]; if tail is an unbound l-list r, we say that l represents
an open list and we use the (abstract) notation [e0, . . . , en | r] to denote it.

A l-list that contains unbound logical objects (i.e., either variables or lists or sets) repre-
sents a partially specified list. Unbound logical objects can occur in a l-list l both as elements
and as the tail of the l-list itself (i.e., l is an open l-list). In the last case, l represents an
unbounded collection of (possibly unknown) values.

In JSetL, a logical list is defined as an instance of the class LList, which extends the
class LCollection. In particular, the list value (i.e., the elems part of a l-list) is an instance
of the class ArrayList which implements the java.util.List interface.

The class LList provides methods to create new l-lists, possibly starting from existing
ones, to deal with l-lists as logical objects and to deal with values possibly bound to l-lists.
Moreover, like logical variables, l-lists can be used to post constraints that implement basic
list operations.

4.1 Constructors

LList()

LList(String extName)

Construct an unbound l-list, with default external name (resp., with external name
extName).

LList(List<?> l)

LList(String extName, List<?> l)

Construct a (bound) l-list, with default external name (resp., with external name
extName), and value l. Same as to create an unbound l-list x and to post and solve
the constraint x.eq(l).

LList(LList ll)

LList(String extName, LList ll)

Construct a l-list, with default external name (resp., with external name extName),
equivalent to the l-list ll. Same as to create an unbound l-list x and to post and solve
the constraint x.eq(ll).

Example 3

• Create an unbound l-list a:

LList a = new LList();

• Create a l-list b, with external name "b", bound to the list value [1,2,3]:

List l = new ArrayList();

l.add(1); l.add(2); l.add(3);

LList b = new LList("b", l);

• Create a l-list c equivalent to the l-list a:

LList c = new LList(a);

7

4.2 Creating new (bound) logical lists

static LList empty()
Returns the empty l-list.

LList ins(Object o)

If this l-list is bound, returns the (new) l-list whose value is obtained by adding o as
the first element of this l-list value. Otherwise (i.e., this l-list is unbound), it returns
the (new) l-list whose value is the list containing o as its first element and this l-list
as the tail part (i.e., [o | this]).

LList insn(Object o)

Like ins, but o is added as the last element of this l-list value.

LList insAll(Object[] c)

LList insAll(Collection c)

If this l-list is bound, return the (new) l-list whose value is obtained by adding all
elements of c in front of this l-list value, respecting the order they have in c. Otherwise,
returns the (new) l-list whose value is the list containing all elements of c and this
l-list as its tail part (i.e., [a1,. . . ,an | this], where a1,. . . ,an are the elements of
c).

static LList mkList(int n)

static LList mkIntList(int n)

Return a l-list, with default external name, whose value is a list of n unbound logical
variables (resp., integer logical variables—see Sect. 11).

Remarks

• The ins, insn, and insAll methods do not modify the object on which they are
invoked: rather they build and return a new l-list obtained by adding the elements
to the given list. Hence, calls to list insertion methods can be concatenated (left
associative).

• Elements to be added to the list value through the ins, insn, and insAll methods
can be of any type, including bound or unbound logical variables, lists or sets.

• The l-list on which ins, insn, and insAll methods are invoked can be either bound or
unbound. In particular, invoking the ins, insn, and insAll methods on an unbound
l-list allows an open list to be built.

• The order of elements and repetitions do matter in lists (whereas they do not matter
in sets—see Sect. 6). Thus, for instance, the list [1, 2] is different from the list [2, 1]
and from the list [1, 2, 2].

Example 4

• Create a l-list d, bound to the empty list:

LList d = LList.empty();

• Create a l-list e, bound to the list value [’c’,’b’,’a’]:

LList e = LList.empty().ins(’a’).ins(’b’).ins(’c’);

or

8

Character[] elems = {’a’,’b’,’c’};

LList e = LList.empty().insAll(elems);

• Create a partially specified l-list f, bound to the list value [1,x], where x is an unbound
logical variable:

LVar x = new LVar("x");

LList f = LList.empty().insn(1).insn(x);

• Create a l-list g, representing the open list [1,2|r], where r is an unbound l-list:

LVar z = new LVar(2);

LList r = new LList("r");

LList g = r.insn(1).insn(z);

Note that the list value bound to g is the list [1,2], since z is replaced by its value 2.

• Create a l-list h, bound to the list value [[],[’c’,’b’,’a’],[1,x]] (i.e., a list of
nested lists):

LList ef = LList.empty().ins(f).ins(e).ins(d);

where d, e, and f are the l-lists defined above.

• Create a l-list i, bound to the list of three new unbound logical variables [X 1,X 2,X 3]:

LList i = LList.mkList(3);

4.3 General utility methods

The class LList provides the utility methods of the class LVar (see Section 3.2), along
with a few other methods that take into account the fact that values possibly bound to
LList objects are collections (namely, lists), possibly containing other logical variables and
collections.

4.3.1 Basic methods

The following methods are the same as LVar’s methods, but adapted to l-list objects:

- LList clone()

- boolean equals(Object o)

- String getName()

- ArrayList<?> getValue()

- boolean isBound()

- void output()

- LList setName(String extName)

- LList setValue(List<?> l)

- String toString()

9

Remarks

• getValue consider only the list value of the given l-list (i.e., it ignores its tail part).
In particular, getValue returns the elems list of the given l-list. In order to obtain
also its tail part one must use the method getTail (see 4.3.2).

• If the l-list denotes an open list, the string returned by the method toString()

is "[e 1,. . . ,e n | r]", where "e 1",. . . ,"e n" are the strings obtained from the
list elements and "r" is the external name of the unbound l-list denoting the tail
part of the list. Similarly, the output produced by the method output() is l =

[e 1,. . . ,e n | r] where l is the external name of the list.

4.3.2 Logical collection methods

The following methods take into account the fact that the value of a bound logical list is a
collection, possibly partially specified (i.e., containing unknown elements), and that a logical
list may have a tail part. Methods in the first group are specific of the class LList, while
methods in the second group are common to all collections, in particular to java.util.List

objects.
Observe that most of these methods take into account only the elems part (i.e., the list

value) of the invocation l-list, while the tail part is simply ignored.

LList getTail()
If this l-list is bound to a not empty l-list, returns its tail part, that is either an
unbound l-list if this l-list is open, or the empty list if this l-list is closed. Otherwise
(i.e., this l-list is unbound or it is the empty l-list), returns a l-list equivalent to the
l-list itself.

boolean isClosed()
If this l-list is bound and it has an empty tail part, returns true; otherwise (i.e., if this
l-list is bound and it has an unbound tail part, or this l-list is unbound), returns false.

boolean isGround()
If this l-list is bound and all its elements and the tail part are ground, returns true;
otherwise (i.e., if the list value of this l-list is not ground, or its tail part is not ground,
or if this l-list is unbound), returns false.

void printElems(char sep)

If this l-list is bound, prints all elements of its list value separated by the character
sep; otherwise, prints " extName", where extName is the external name of this l-list.

Object[] toArray()
If this l-list is bound, returns an array containing all elements in its list value, from
first to last element; otherwise, returns an empty array.

The following methods provides facilities that are also provided by the interface List of
java.util. They could always be replaced by an invocation to the equivalent method of
List applied to the list value that is returned by calling getValue on the l-list. However,
they are provided by LList for the user convenience.

Object get(int i)

If this l-list is bound, returns the i-th element of its list value; otherwise, raises an
exception NotInitLObjectException. When the l-list v is bound, v.get(i) is equiv-
alent to v.getValue().get(i).

10

int getSize()
If this l-list is bound, returns the number of elements in its list value. Otherwise, it
raises an exception NotInitLObjectException. When the l-list v is bound, v.getSize()
is equivalent to v.getValue().size().

boolean isEmpty()
If this l-list is bound to the empty l-list, returns true. Otherwise:if this l-list is
bound to a not empty l-list, returns false; if this l-list is unbound, raises an exception
NotInitLObjectException. When the l-list v is bound, v.isEmpty() is equivalent to
v.getValue().isEmpty().

Iterator iterator()
Returns an Iterator over the elements of its list value. When the l-list v is bound,
v.iterator() is equivalent to v.getValue().iterator().

boolean testContains(Object o)

If this l-list is bound and its list value contains o, returns true. Otherwise: if this
l-list is bound and its list value does not contain o, returns false; if this l-list is un-
bound, raises an exception NotInitLObjectException. When the l-list v is bound,
v.testContains(o) is equivalent to either v.getValue().contains(o.getValue())
or v.getValue().contains(o), depending on whether o is a bound logical object
(i.e., either a logical variable or a logical collection) or not.
Note that when o is a logical object, the value possibly associated with o is considered
for the membership test; similarly, when elements of the list value associated with this
l-list are logical objects, then their values are taken into account, if any.

4.4 Constraint methods

The class LList provides methods for generating equality and inequality constraints over
lists.

Constraint eq(LList ll)

Returns the atomic constraint this = ll, that unifies this l-list with the l-list ll. If
this l-list is unbound and ll is bound to a list l, this l-list becomes bound to l after the
constraint has been solved; conversely, if ll is unbound, this l-list remains unbound.
Note that, solving this constraint causes the unbound variables possibly occurring in
ll to be bound to the proper values, as required by the unification of the two lists.

Constraint eq(List<?> l)

Returns the atomic constraint this = l, that unifies this l-list with the generic Java
list l. If this l-list is unbound, it becomes bound to l after the constraint has been
solved.

Constraint neq(LList ll)

Constraint neq(List<?> l)

Return the atomic constraint this 6= ll, that requires this l-list to be different from
the l-list ll (resp., from the generic Java list l).

Constraint in(LSet ls)

Constraint in(Set<?> s)

Return the atomic constraint this ∈ ls (resp., this ∈ s), that requires this logical list
to be a member of the logical set ls (resp., of the Java generic set s). When solved,

11

this constraint will nondeterministically unify this logical list with each value in ls

(resp., in s). The constraint will succeed if at least one unification succeeds.

Constraint nin(LSet ls)

Constraint nin(Set<?> s)

Return the atomic constraint this 6∈ ls (resp., this 6∈ s), that requires this logical
list not to be a member of the logical set ls (resp., of of the Java generic set s).

The class LList provides also a method for generating a specified constraint for all
elements of a list:

Constraint forallElems(LVar y, Constraint c)

If this l-list is bound, returns a conjunction of atomic constraints c1 ∧ c2 ∧ · · · ∧ cn
for all elements ei, . . . , en of the list bound to this l-list; otherwise (i.e., this l-list is
unbound), it raises an exception NotInitLObjectException. Each ci is obtained from
c by replacing all occurrences of y with ei. For example, if l is the list [1,2,z], where z
is an unbound logical variable, l.forallElems(y,y.neq(0)) generates a conjunction
of constraints logically equivalent to 1 6= 0 ∧ 2 6= 0 ∧ z 6= 0.

5 Logical pairs: the class LPair

A logical pair (or, simply, a l-pair) is an ordered sequence of two elements X and Y , repre-
sented as (X,Y), where X and Y can be ground or non-ground logical objects.

In JSetL a logical pair is an instance of the class LPair, which extends LList. Since
logical pairs are logical lists, they support every method and constraint defined for their
direct superclass, along with some more methods that take into account the fact that logical
pairs may have just two elements.

5.1 Constructors

LPair()

LPair(String extName)

Construct an unbound logical pair with default external name (resp. with external
name extName).

LPair(Object o1, Object o2)

LPair(String extName, Object o1, Object o2)

Construct a logical pair [o1,o2] with default external name (resp. with external name
extName).

LPair(LPair p)

LPair(String extName, LPair s)

Construct a logical pair, with default external name (resp., with external name extName),
equivalent to the logical pair p. Same as to create an unbound logical pair x and to
post and solve the constraint x.eq(p).

Example 5

Create a new unbound logical pair with external name "p":
LPair p1 = new LPair("p");

12

Create a new bound logical pair with external name "pp" and value (y, z):
LVar y = new LVar("y");

LVar z = new LVar("z");

LPair p3 = new LPair(y,z);

5.2 General utility methods

LPair inherits all LList methods and redefines some of them. The following methods are
adapted for LPair:

LPair clone()

Object getFirst()

Object getSecond()

LPair setName(String name)

LPair setValue(List<?> l) This method throws an exception IllegalArgumentException

if l is not a pair.

5.3 Constraint methods

LPair inherits all constraint methods from LList.

6 Logical sets: the class LSet

A logical set (or, simply, a l-set) s is a special kind of logical object whose value is a pair
〈elems, tail〉, where elems (the set value) is a set of n objects of arbitrary types (n ≥ 0), and
tail is either an empty or an unbound l-set representing the rest of s. When elems is empty
(i.e., n = 0), s is the empty l-set and we use {} to denote it. When elems is not empty
(i.e., n > 0): if tail is the empty l-set, we say that s represents a closed set and we use the
(abstract) notation {e0, . . . , en}; if tail is an unbound l-set r, we say that s represents an
open set and we use the (abstract) notation {e0, . . . , en / r} to denote it.

Logical sets are similar to logic lists in many aspects. In particular, like l-lists, l-sets can
represent partially specified collections. The main difference with l-lists is that the order of
elements and repetitions in a l-set do not matter, while they are important in l-lists.

Note that, differently from l-lists, the cardinality of a partially specified set is not de-
termined uniquely (even if the set is closed). For example, the cardinality of the set {1,x},
where x is an unbound logical variable, can be 1 or 2 depending on whether x will be
subsequently bound to a value equal to 1 or different from 1, respectively.

In JSetL, a logical set is defined as an instance of the class LSet, which extends the class
LCollection. In particular, the set value (i.e., the elems part of a l-set) is an instance of
the class HashSet which implements the java.util.Set interface.

Methods provided by the class LSet are basically the same as those of the class LList but
applied to LSet objects. In particular, LSet provides methods to create new l-sets, possibly
starting from existing ones, to deal with l-sets as logical objects and to deal with values
possibly bound to l-sets. Moreover, l-sets can be used to post constraints that implement
most of the usual set-theoretical operations.

13

6.1 Constructors

LSet()

LSet(String extName)

Construct an unbound l-set, with default external name (resp., with external name
extName).

LSet(Set<?> s)

LSet(String extName, Set<?> s)

Construct a (bound) l-set, with default external name (resp., with external name
extName), and value s. Same as to create an unbound l-set x and to post and solve
the constraint x.eq(s).

LSet(LSet ls)

LSet(String extName, LSet ls)

Construct a l-set, with default external name (resp., with external name extName),
equivalent to the l-set ls. Same as to create an unbound l-set x and to post and solve
the constraint x.eq(ls).

Example 6

• Create an unbound l-set a:

LSet a = new LSet();

• Create a l-set b, with external name "b", bound to the set value {1,2,3}:
Set s = new HashSet();

s.add(1); s.add(2); s.add(3);

LSet b = new LSet("b",s);

• Create a l-set c equivalent to the l-set a:

LSet c = new LSet(a);

6.2 Creating new (bound) logical sets

static LSet empty()
Returns the empty l-set.

LSet ins(Object... o)

If this l-set is bound, return the (new) l-set whose value is obtained by adding all
elements of o as elements of the set bound to this l-set. Otherwise, return the (new)
l-set whose value is the set containing all elements in o and this l-set as its tail part
(i.e., {a1,. . . ,an / this}, where a1,. . . ,an are the elements of o).

LSet insAll(Object[] c)

LSet insAll(Collection c)

If this l-set is bound, return the (new) l-set whose value is obtained by adding all
elements of c as elements of the set bound to this l-set. Otherwise, return the (new)
l-set whose value is the set containing all elements in c and this l-set as its tail part
(i.e., {a1,. . . ,an / this}, where a1,. . . ,an are the elements of c).

static LSet mkSet(int n)

If n ≥ 0, returns a l-set (with default external name), whose value is a set of n unbound
logical variables; if n < 0, raises an exception IllegalArgumentException.

14

Note that since the order of elements in a set is not important, it is not necessary to
supply distinct methods for head and tail insertion because they would produce the same
set.

All remarks and examples shown for l-lists in Section 4 are still valid in the case of l-sets,
provided LList is replaced by LSet and insn is replaced by ins.

6.3 General utility methods

The class LSet provides most of the utility methods of classes LVar (see Section 3.2) and
LList (see Section 4.3).

6.3.1 Basic methods

The following methods are the same as LVar’s methods, but adapted to LSet objects:

- LSet clone()

- boolean equals(Object o)

- String getName()

- HashSet<?> getValue()

- boolean isBound()

- void output()

- LSet setName(String extName)

- LSet setValue(Set<?> s)

- String toString()

Remarks of Section 4.3.1 apply to l-sets as well.

6.3.2 Logical collection methods

The class LSet provides all the logical collection methods of the class LList, except the
method get (see Section 4.3.2). Note that, like in the case of l-lists, most of the collection
methods take into account only the elems part (i.e., the set value) of the invocation l-set,
while the tail part is simply ignored.

- int getSize()

- LSet getTail()

- boolean isClosed()

- boolean isEmpty()

- boolean isGround()

- Iterator iterator()

- void printElems(char sep)

- boolean testContains(Object o)

- Object[] toArray()

15

Remarks

• LSet objects may contain multiple occurrences of the same value. For example, if s is
the set {x,2}, where x is a logical variable, and x is successively bound to 2, then s will
contain two occurrences of the same value 2. However, all methods dealing with l-sets,
but the method toArray, ignore repetitions (i.e., they consider multiple occurrences
of the same value as a single set element). For example, calling getSize on the set s

considered above, we get 1 as its result. Conversely, s.toArray() returns the array
[2,2].

To explicitly remove duplicates from l-sets, the class LSet provides also the following
method:

LSet normalizeSet()
Returns a copy of this l-set where all duplicates are physically removed.

6.4 Constraint methods

The class LSet provides methods for generating constraints over sets (referred to as l-set
constraints) that implement most of the usual set-theoretical operations.

Comparison constraints

Constraint eq(LSet ls)

Returns the atomic constraint this = ls, that unifies this l-set with the l-set ls. If
this l-set is unbound and ls is bound to a set s, this l-set becomes bound to s after the
constraint has been solved; conversely, if ls is unbound, this l-set remains unbound.
Note that solving this constraint causes the unbound variables possibly occurring in
ls to be bound to the proper values as required by set unification (see, e.g., [4]).

Constraint eq(Set<?> s)

Returns the atomic constraint this = s, that unifies this l-set with the set s. If this
l-set is unbound, it becomes bound to s after the constraint has been solved.

Constraint neq(LSet ls)

Constraint neq(Set<?> s)

Return the atomic constraint this 6= s, that requires this l-set to be different from
the l-set ls (resp., from the set s).

Membership constraints

Constraint in(LSet ls)

Constraint in(Set<?> s)

Return the atomic constraint this ∈ ls (resp., this ∈ s), that requires this logical set
to be a member of the logical set ls (resp., of the Java generic set s). When solved,
this constraint will nondeterministically unify this logical set with each value in ls

(resp., in s). The constraint will succeed if at least one unification succeeds.

Constraint nin(LSet ls)

Constraint nin(Set<?> s)

Return the atomic constraint this 6∈ ls (resp., this 6∈ s), that requires this logical
set not to be a member of the logical set ls (resp., of of the Java generic set s).

16

Constraint contains(Object o)

Returns the atomic constraint o ∈ this that requires this l-set to contain the object
o. Same as new LVar(o).in(this) (see Sect. 3.3).

Constraint ncontains(Object o)

Returns the atomic constraint o 6∈ this that requires this l-set to not contain the
object o. Same as new LVar(o).nin(this) (see Sect. 3.3).

Set-theoretical constraints

Constraint diff(LSet s, LSet q)

Constraint diff(LSet s, Set<?> q)

Constraint diff(Set<?> s, LSet q)

Constraint diff(Set<?> s, Set<?> q)

Return the constraint diff (this, s, q), which is true if and only if q is the set-theoretical
difference of this and s, i.e., q = this \ s.

Constraint disj(LSet s)

Constraint disj(Set<?> s)

Return the constraint disj (this, s), which is true if and only if this is disjoint from s,
i.e., this ∩ s = ∅.

Constraint inters(LSet s, LSet q)

Constraint inters(LSet s, Set<?> q)

Constraint inters(Set<?> s, LSet q)

Constraint inters(Set<?> s, Set<?> q)

Return the constraint inters(this, s, q), which is true if and only if q is the intersection
between this and s, i.e., q = this ∩ s.

Constraint less(LVar o, LSet s)

Constraint less(Object o, LSet s)

Constraint less(LVar o, Set<?> s)

Constraint less(Object o, Set<?> s)

Return the constraint less(this, o, s), which is true if and only if o belongs to this and
s is equal to this less o, i.e., o ∈ this ∧ s = this \ {o}.

Constraint size(IntLVar n)

Constraint size(Integer n)

Return the constraint size(this, n), which is true if and only if n is the cardinality of
this, i.e., n = | this |.

Constraint subset(LSet s)

Constraint subset(Set<?> s)

Return the constraint subset(this, s), which is true if and only if this is a subset of s,
i.e., this ⊆ s.

Constraint union(LSet s, LSet q)

Constraint union(LSet s, Set<?> q)

Constraint union(Set<?> s, LSet q)

Constraint union(Set<?> s, Set<?> q)

Return the constraint union(this, s, q), which is true if and only if q is the union of
this and s, i.e., q = this ∪ s.

17

Negated versions of the constraints diff, disj, inters, subset, union are also provided
by the following methods.

Constraint ndiff(LSet s, LSet q)

Constraint ndiff(LSet s, Set<?> q)

Constraint ndiff(Set<?> s, LSet q)

Constraint ndiff(Set<?> s1, Set<?> q)

Constraint ndisj(LSet s)

Constraint ndisj(Set<?> s)

Constraint ninters(LSet s, LSet q)

Constraint ninters(LSet s, Set<?> q)

Constraint ninters(Set<?> s, LSet q)

Constraint ninters(Set<?> s1, Set<?> q)

Constraint nsubset(LSet s)

Constraint nsubset(Set<?> s)

Constraint nunion(LSet s, LSet q)

Constraint nunion(LSet s, Set<?> q)

Constraint nunion(Set<?> s, LSet q)

Constraint nunion(Set<?> s1, Set<?> q)

Global constraints

Constraint forallElems(LVar y, Constraint c)

Same as forallElems of class LList.

7 Integer logical sets: the class IntLSet

Integer logical sets are logical sets whose elements are either integer values or (possibly
unbound) integer logical variables (i.e., instances of IntLVar). Integer logical sets are in-
stances of the class IntLSet, which is a subclass of LSet. Hence, integer logical sets are by
any means logical sets as LSet instances are. IntLSet objects are usually used in conjunc-
tion with IntLVar objects to post set-theoretical constraints on partially specified sets of
integers.

7.1 Constructors

IntLSet()

IntLSet(String extName)

Construct an unbound integer l-set, with default external name (resp., with external
name extName).

IntLSet(int p, int q)

IntLSet(String extName, int p, int q)

Construct a bound integer l-set, with default external name (resp., with external name
extName), whose elements are all the integers from p to q.

18

IntLSet(MultiInterval mi)

IntLSet(String extName, MultiInterval mi)

Construct a bound integer l-set, with default external name (resp., with external name
extName), whose elements are all the integers contained in the multi-interval mi, that
is the union of n (n ≥ 0) disjoint intervals (see Sections A.1 and A.2 for a precise
description of intervals and multi-intervals in JSetL).

IntLSet(Set<Integer> s)

IntLSet(String extName, Set<Integer> s)

Construct a bound integer l-set, with default external name (resp., with external name
extName), and value s.

IntLSet(IntLSet s)

IntLSet(String extName, IntLSet s)

Construct an integer l-set s, with default external name (resp., with external name
extName), equivalent to the integer logical set s. Same as to create an unbound integer
logical set x and to post and solve the constraint x.eq(s).

Example 7

• Create an unbound logical set of integers with name "a":
IntLSet a = new IntLSet("a");

• Create the logical set of integers representing the interval [−2..4]:
IntLSet b = new IntLSet(-2, 4);

• Create a logical set of integers containing 1,2, -10 and 8:
HashSet<Integer> elems = new HashSet<>();

elems.add(1); elems.add(2); elems.add(-10); elems.add(8);

IntLSet c = new IntLSet(elems);

7.2 General utility methods

Class IntLSet inherits all member methods of LSet. The following is a list of all methods
provided by IntLSet that are not simply inherited.

static IntLSet mkIntSet(int n)

Returns an integer logical set, with default external name, whose value is a set of
n unbound integer logical variables—see Sect. 11. If n < 0, throws an exception
IllegalArgumentException.

static IntLSet empty()

Returns an empty logic set of integers.

IntLSet clone()

HashSet<Integer> getValue()

IntLSet ins(Integer n)

IntLSet ins(IntLVar var)

IntLSet ins(Integer... n)

IntLSet ins(IntLVar... var)

19

IntLSet insAll(ArrayList<Integer> v)

IntLSet insAll(Integer[] arr)

IntLSet insAll(IntLVar[] arr)

IntLSet normalizeSet()

IntLSet setName(String name)

Example 8

• Create a partially specified logical set of integers with at most four elements:
IntLSet d = IntLSet.mkIntSet(4);

• Create the empty logical set of integers
IntLSet e = IntLSet.empty();

• Create an open logical set of integers containing 1, 2 and an (unbound) integer logical
variable
IntLSet f = new IntLSet().ins(1).ins(2).ins(new IntLVar());

7.3 Constraint methods

Besides all constraints supported by its superclass LSet, IntLSet supports a few other
constraints that take into account the fact that the elements of the set are integers or
integer logical variables. The following constraints are applied only to the known elements
of the IntLSet at the moment the method is called; they ignore the possibly unspecified
tail of the set.

Constraint domAll(int a, int b)

Constructs a constraint which requires that all IntLVar objects in this set have domain
the interval [a..b] (see Sect. 11).

Constraint labelAll()
Constraint labelAll(LabelingOptions lop)

Construct a constraint which forces labeling on all integer logical variables occurring
in this set, using the default value choice heuristic (resp., the value choice heuristic
specified by lop).

8 Logical binary relations: the class LRel

A logical binary relation (or, simply, a l-rel) is a special kind of logical set whose elements
are (only) logical pairs.

In JSetL, logical binary relations are instances of the class LRel, which extends the class
LSet. Since logical binary relations are also logical sets, the former inherit all operations that
are available for the latter, such as equality, membership, union, disjunction, etc. Binary
relations allow the user to post relational constraints, such as identity, inverse (or converse),
composition, and so on.

20

8.1 Constructors

Logical binary relations are logical sets whose values must be pairs so each constructor of
this class enforces that.

LRel()

LRel(String extName)

Construct an unbound l-rel, with default external name (resp., with external name
extName).

LRel(Set<LPair> s)

LRel(String extName, Set<LPair> s)

Construct a (bound) l-rel, with default external name (resp., with external name
extName), whose elements are all the logical pairs in the Java set s.

LRel(LRel s)

LRel(String extName, LRel s)

Construct a l-rel, with default external name (resp., with external name extName),
equivalent to the l-rel s. Same as to create an unbound l-rel x and to post and solve
the constraint x.eq(s).

Example 9

• Create an unbound l-rel with external name "a":

LRel a = new LRel("a");

• Create a l-rel which is equivalent to a and has external name "b":

LRel b = new LRel("b", a);

• Create a l-rel c containing the pairs (x,2), (y,x), where x and y are logical variables:

LVar x = new LVar("x");

LPair p1 = new LPair(x,2);

LPair p2 = new LPair(new LVar("y"), x);

Set<LPair> set = new HashSet<>();

set.add(p1); set.add(p2);

LRel c = new LRel(set);

8.2 Creating new (bound) logical binary relations

The class LRel provides some methods to create new bound LRel objects.

static LRel empty()
Returns the empty l-rel.

LRel ins(LPair p)

Returns a l-rel containing p as its element and this as its rest.

LRel ins(LPair... p)

LRel insAll(LPair[] arr)

LRel insAll(ArrayList<LPair> v)

Return a l-rel which contains all logical pairs in arr (resp., in v) as its elements and
this as its rest.

21

Note that neither ins nor insAll modify the object on which they are invoked. They
construct and return a new object instead.

Example 10

• Create an empty l-rel:

LRel empty = LRel.empty();

• Create a new l-rel which has the same elements of the l-rel a, with the addition of
(42,43):

LRel b = a.ins(new LPair(42,43));

• Create a new l-rel which has the same elements of b, with the addition of ("this",
"example") and (3,9):

LPair[] cElems = {new LPair("this", "example"), new LPair(3,9)};
LRel c = b.insAll(cElems);

8.3 General utility methods

The class LRel inherits all general utility methods from its superclass LSet. Below is a list
of general utility methods that are overridden by LRel.

LRel clone()

LRel setName(String name)

HashSet<LPair> getValue()

8.4 Constraint methods

Positive constraints

Constraint comp(LRel s, LRel q)

Returns the constraint comp(this, s, q), which is true if and only if q is the relational
composition of this and s, i.e., q = {(x, z)|∃y((x, y) ∈ this ∧ (y, z) ∈ s}.

Constraint dom(LSet a)

Returns the constraint dom(this, a), which is true if and only if a is the domain of
this, i.e., a = {x|∃y((x, y) ∈ this)}.1

Constraint dres(LSet a, LRel s)

Returns the constraint dres(this, a, s), which is true if and only if s is the domain
restriction of this with respect to the set a, i.e., s = {(x, y)|(x, y) ∈ this ∧ x ∈ a}.

Constraint id(LSet a)

Returns the constraint id(a, this), which is true if and only if this is the identity relation
with respect to the set a, i.e., this = {(x, x)|x ∈ a}.

Constraint inv(LRel s)

Returns the constraint inv(this, s), which is true if and only if s is the inverse relation
of this, i.e., s = {(y, x)|(x, y) ∈ this}.

1To be not confused with the (finite) domain associated with an integer logical variable (see Sect. 11),
which is used to specify the set of all possible values for that variable.

22

Constraint ran(LSet a)

Returns the constraint ran(this, a), which is true if and only if a is the range of this,
i.e., a = {y|∃x((x, y) ∈ this)}.

Constraint rres(LSet a, LRel s)

Returns the constraint rres(this, a, s), which is true if and only if s is the range re-
striction of this with respect to the set a, i.e., s = {(x, y)|(x, y) ∈ r ∧ y ∈ a}.

Negative constraints

Constraint ncomp(LRel s, LRel q)

Returns the constraint ncomp(this, s, q), which is true if and only if q is not the rela-
tional composition of this and s.

Constraint ndom(LSet a)

Returns the constraint ndom(this, a), which is true if and only if a is not the domain
of this.

Constraint ndres(LSet a, LRel s)

Returns the constraint ndres(this, a, s), which is true if and only if s is not the domain
restriction of this with respect to the set a.

Constraint nid(LSet a)

Returns the constraint nid(a, this), which is true if and only if this is not the identity
relation with respect to the set a.

Constraint ninv(LRel s)

Returns the constraint ninv(this, s), which is true if and only if s is not the inverse
relation of this.

Constraint nran(LSet a)

Returns the constraint nran(this, a), which is true if and only if a is not the range of
this.

Constraint nrres(LSet a, LRel s)

Returns the constraint nrres(this, a, s), which is true if and only if s is not the range
restriction of this with respect to the set a.

9 Logical maps: the class LMap

A logical map (or, simply, a l-map) is a special kind of logical binary relation whose elements
are logical pairs with the additional property that there can’t be two pairs with the same
first element and different second elements in the same logical map. Hence, logical maps
represent partial functions.

In JSetL, logical maps are instances of the class LMap, which extends the class LRel.

9.1 Constructors

LMap()

LMap(String extName)

Construct an unbound l-map, with default external name (resp., with external name
extName).

23

LMap(Set<LPair> s)

LMap(String extName, Set<LPair> s)

Construct a (bound) l-map, with default external name (resp., with external name
extName), whose elements are all the logical pairs in the Java set s.
If s can’t represent a partial function (i.e., there are two pairs in s with the same
first element and different ground second elements) calling this method will cause an
exception NotPFunException to be thrown.

LMap(LMap s)

LMap(String n, LMap s)

Construct a l-map, with default external name (resp., with external name extName),
equivalent to the l-map s. Same as to create an unbound l-map x and to post and
solve the constraint x.eq(s).

Example 11

• Create an unbound l-map with external name "a":

LMap a = new LMap("a");

• Create a l-map bound to {(1,2),(x,2),(x,y)}:
LVar x = new LVar("x"), y = new LVar("y");

Set<LPair> set = new HashSet<>();

set.add(new LPair(1,2)); set.add(new LPair(x,2)); set.add(new LPair(x,y));

LMap b = new LMap(set);

• Trying to create the l-map {(x,2),(1,3),(x,3)} will throw an exception NotPFunException:

Set<LPair> set2 = new HashSet<>();

set2.add(new LPair(x,2));

set2.add(new LPair(1,3)); set2.add(new LPair(x,3));

LMap c = new LMap(set2);

9.2 Creating new (bound) logical maps

The class LMap provides a number of methods to create bound logical maps. Below is a list
of such methods: they are basically the same as those found in LRel but return a LMap and
throw an exception NotPFunException if the constructed set can not be a partial function.

static LMap empty()

LMap ins(LPair p)

LMap ins(LPair... p)

LMap insAll(LPair[] arr)

LMap insAll(ArrayList<LPair> v)

9.3 General utility methods

The class LMap inherits and supports all general utility methods from its superclasses LRel

and LSet. Below is a list of general utility methods that are overridden by LMap.

LMap clone()

LMap setName(String name)

24

9.4 Constraint methods

Since LMaps are also LRels, which in turn are also LSets, LMaps support all constraints that
can be created by those superclasses. In addition, LMap provides a constraint to ensure that
an LMap object is indeed a partial function (constraint pfun), along with some overridden
LRel constraints which have the same meaning of the corresponding LRel constraints but a
different implementation that takes into account the special nature of partial functions.

Constraint comp(LMap s, LMap q)

Constraint dom(LSet a)

Constraint ran(LSet a)

Same as the corresponding methods provided by LRel but taking into account the fact
that this is a partial function.

Constraint pfun()
Returns the constraint pfun(this), which is true if and only if this is a partial function,
i.e., a logical binary relation such that there can’t be two pairs in the relation with the
same first element and different second elements. Note that, in this case, the second
elements can be either ground or not ground objects.

10 Restricted intensional sets: the class Ris

Intensional sets are sets defined by the property that their elements must satisfy; conversely,
extensional sets (i.e., the sets implemented by the class LSet) are defined by enumerating
their elements. For example, if D = {1, 2, 3, 4, 5}, then {2x|x ∈ D ∧ x mod 2 = 0} is an
intensional set, denoting {4, 8}.

Restricted intensional sets (abbreviated as RIS) are intentional sets of the form

{c[xxx] : D |F [xxx] • P [xxx]}

in which c is the control term, xxx , 〈x1, . . . , xn〉, n > 0, is the vector of all variables occurring
in c, D is the domain of the control term and must be a finite (but possibly unbounded) set,
F [xxx] is the filter and is a constraint involving xxx, and P [xxx] is the pattern and is an expression
involving xxx. The intuitive meaning of a RIS is the set of all instances of P [xxx] such that c[xxx]
belongs to D and F [xxx] holds. For example, the intensional set {2x|x ∈ D ∧ x mod 2 = 0}
can be written as a RIS as follows:

{x : D |x mod 2 = 0 • 2x}.

In JSetL, restricted intensional sets are instances of the class Ris, which extends LSet.
Methods provided by Ris include most of those provided by LSet adapted for RISs, along
with some others, such as getters for the control term, domain, filter and pattern of the
RIS. Some of the methods provided by LSet are not supported by Ris and they throw an
exception UnsupportedOperationException when called.

10.1 Constructors

Ris(LObject cT, LSet D, Constraint f)

Constructs the restricted intensional set {cT : D | f • cT}.

25

Ris(LObject cT, LSet D, Constraint f, LObject p, LObject... dummyVars)

Constructs the restricted intensional set {cT : D | f • p}, treating each variable in
dummyVars as a dummy variable (i.e., it creates a new instance of the variables in
dummyVars for every application of f and p).

Ris(Ris r)

Constructs a restricted intensional set that has the same control term, domain, filter,
pattern and dummy variables as the argument r.

None of the arguments in the constructors can be null, otherwise an exception NullPointerException

is raised.

Example 12

• Create the RIS {x : D |x < 9 • 2x} with D unbound variable:

IntLSet D = new IntLSet("D");

IntLVar x = new IntLVar("x");

Ris a = new Ris(x, D, x.lt(9), x.mul(2));

• Create the RIS {x : [−3..3] |x mod 2 = 0 • x+ 1}:

IntLSet D = new IntLSet("D",-3,3);

IntLVar x = new IntLVar("x");

Ris b = new Ris(x, D, x.mod(2).eq(0), x.sum(1));

• Create the RIS {[x1, x2, x3|R] : D |x1 6= x2 ∧ x2 = x3 • [x1, x2, x3|R]}:

LSet D = new LSet("D");

LVar x1 = new LVar("x1");

LVar x2 = new LVar("x2");

LVar x3 = new LVar("x3");

LList cT = new LList("R").ins(x1,x2,x3);

Ris c = new Ris(cT, D, x1.neq(x2).and(x2.eq(x3)));

10.2 General utility methods

Restricted intensional sets support almost all the general utility methods of LSet, though
some of them are implemented in a rather different way.

Basic methods

Ris clone()

boolean equals(Object object)

Returns true if and only if the argument object == this or if the parameter is a
LSet and the Ris is expandable and its expansion is equal to the parameter object.

String getName()

HashSet<?> getValue()

Calling this method is the same as invoking the method getValue() on the LSet

returned by this.expand (so it will throw an exception IllegalStateException if
this Ris is not expandable).

26

boolean isBound()

Calling this method is the same as invoking the method isBound() on the domain

of this Ris.

void output()

Outputs to STDOUT a string representation of the Ris. The output is of the form
“ RIS NAME = RIS STRING” where RIS NAME is the name of the Ris, RIS STRING
is the result of the toString() method call on this Ris.

Ris setName(String name)

String toString()

The following method, although inherited from LSet or from its superclasses, is not
supported by Ris and will throw an exception UnsupportedOperationException when
called:

LSet setValue(Set<?> value)

Logical collections methods

int getSize()

Calling this method is the same as invoking the method getSize() on the LSet re-
turned by this.expand.

Ris getTail()

Returns the Ris itself.

boolean isClosed()

Calling this method is the same as invoking the method isClosed() on the domain
of this Ris.

boolean isEmpty()

Calling this method is the same as invoking the method isEmpty() on the domain of
this Ris.

boolean isGround()

Calling this method is the same as invoking the method isGround() on the domain
of this Ris.

Iterator<Object> iterator() Calling this method is the same as invoking the method
iterator() on the LSet returned by this.expand.

void printElems(char sep) Calling this method is the same as invoking the method
printElems(sep) on the LSet returned by this.expand.

boolean testContains(Object object)

Calling this method is the same as calling it on the result of the expansion of the Ris.

Object[] toArray() Calling this method is the same as invoking the method toArray()

on the LSet returned by this.expand.

The following method, although inherited from LSet or from its superclasses, is not
supported by Ris and will throw an exception UnsupportedOperationException when
called:

LSet normalizeSet()

27

10.3 RIS methods

The class Ris introduces some new methods, not provided by LSet or by its superclasses.

Getters

The following methods are getters for the control term, domain, filter and pattern of re-
stricted intensional sets.

LObject getControlTerm()

LSet getDomain()

Constraint getFilter()

LObject getPattern()

RIS expansion

The following methods are used to deal with the expansion of a restricted intensional set
to an extensional set. We will say that a Ris {c : D |F] • P} is expandable if and only if
either D is empty or D contains at least a ground element and the filter F does not contain
any free variable. The expanded form of a Ris is a LSet object containing the result of the
application of the pattern to each element of the domain that is ground and satisfies the
filter. In particular, if the domain is empty the expansion of the Ris is the empty LSet.

boolean isExpandable()

Returns true if this Ris is expandable, false otherwise.

LSet expand() Returns the logical set representing the expansion of this Ris if it is ex-
pandable, throws an exception IllegalStateException otherwise.

Example 13

• Create the RIS {x : {1, 2, 3, y/R} |x > 1 • x ∗ 2} and expand it:

IntLSet domain = new IntLSet("R")

.ins(1).ins(2).ins(3).ins(new IntLVar("y")).setName("D");

IntLVar x = new IntLVar("x");

Ris ris = new Ris(x, domain, x.gt(1), x.mul(2));

if(ris.isExpandable()) {

LSet expandedRis = ris.expand().setName("expandedRis");

expandedRis.output();

}

The generated output will be:

_expandedRis = {6,4/{ _x : {_y/_R} | _x > 1 @ _N14, _N14 = _x * 2 }}

that is an extensional logical set containing two elements 6 and 4 and a rest part repre-
sented by the restricted intensional set {_x : {_y/_R} | _x > 1 @ _N14, _N14 = _x * 2 },
where _N14 is the internal IntLVar containing the result of x * 2.

28

10.4 Constraint methods

The class Ris supports all constraint methods of LSet and its superclasses except for a few
that are not supported at the moment.

The following are the l-set constraints supported by Ris:

- eq and neq

- in and nin

- contains and ncontains

- diff and ndiff

- disj and ndisj

- inters and ninters

- less

- subset and nsubset

- union and nunion

- forallElems

Below is a list of the unsupported constraint methods. Each of them will throw an
exception UnsupportedOperationException when called.

- size

- allDiff

Example 14

• Post and try to solve some constraints on the RIS defined in Example 13.

IntLSet s = new IntLSet().ins(6).ins(8);

Solver solver = new Solver();

solver.add(s.eq(ris));

domain.output(); // D = {1..3, _y/_R}

solver.check(); // -> true

domain.output(); // -> D = {1..4/_R}

solver.add(ris.contains(0));

solver.check(); // -> false

where {1..3, y/ R} represents the multi-interval [1..3] ∪ [y..y] ∪ R.

11 Integer logical variables: the class IntLVar

Integer logical variables are a special case of the logical variables described in Section 3, in
which values are restricted to be integer numbers. Moreover, an integer logical variable has
a finite domain and a (possibly empty) integer arithmetic constraint associated with it.

The domain specifies the set of all possible values that can be bound to the variable and
is represented as a multi-interval (see Section A.2).

A domain for an integer logical variable v can be specified when the variable v is created,
and it is automatically updated when the constraints possibly posted on v are solved in order
to maintain constraint consistency. For example, if x and y are integer logical variables both
with domain [1..10] and we add the constraint x > y, then the domain of x is updated to
[2..10] and the domain of y to [1..9]. When the domain of a variable is restricted to a single

29

value k (i.e., it is a singleton {k}), the variable becomes bound to this value. Conversely, if
the domain is reduced to the empty set, it means that the constraints involving that variable
are not satisfiable.

The arithmetic constraints associated with integer logical variables are generated by eval-
uating integer logical expressions, i.e., expressions built using the usual arithmetic operators
sum, sub, mul and div, applied to integer logical variables and integer constants. Evaluating
an integer logical expression e yields a new integer logical variable X1 with an associated
constraint

X1 = e1 ∧ X2 = e2 ∧ . . . ∧ Xn = en,

where e1, . . . , en are the subexpressions occurring in e and X1, . . . , Xn are internal integer
logical variables, that represents a flattened form of the expression e.

For example, if e is the integer logical expression x.sum(y.sub(1)), where x and y are
integer logical variables, the evaluation of e returns the integer logical variable X1 with the
associated constraint X1 = x +X2 ∧ X2 = y− 1.

In JSetL, an integer logical variable is an instance of the class IntLVar, which extends
the class LVar. Values of integer logical variables are integer numbers. Unions of intervals,
used to represent variable domains, are instances of the class MultiInterval (see Section
A.2). Constraints possibly associated with integer logical variables are instances of the class
Constraint (see Section 14).

The class MultiInterval provides the static fields INF and SUP to represent, respectively,
the minimum and maximum representable values for a multi-interval. As a notational con-
vention (see Sections A.1 and A.2), we will denote these values −α and α, respectively,

and we will use Zα
def
= [−α..α] to denote the universe multi-interval, which corresponds to

the maximum representable multi-interval. Moreover, if M is a multi-interval, the nota-
tion ‖M‖α will be used to indicate the normalization operation over M which is defined as
M ∩ Zα.2

11.1 Constructors

IntLVar()

IntLVar(String extName)

Construct an unbound integer logical variable, with no external name (resp., with ex-
ternal name extName). The domain of this variable is the universe (multi-)interval Zα
(i.e., [MultiInterval.INF..MultiInterval.SUP]). The constraint associated with
this variable is the empty conjunction.

IntLVar(Integer k)

IntLVar(String extName, Integer k)

Construct an integer logical variable, with no external name (resp., with external
name extName) and value k. The domain of this variable is ‖{k}‖α and the associated
constraint is the empty conjunction.

IntLVar(IntLVar v)

IntLVar(String extName, IntLVar v)

Construct an integer logical variable, with no external name (resp., with external name
extName), equivalent to the logical variable v. The domain and the constraint of this
variable are the domain and the constraint of the variable v .

2Note that MultiInterval.INF and MultiInterval.SUP have the same value as Interval.INF and
Interval.SUP, respectively; then the latter can either be used in place of the former.

30

IntLVar(Integer a, Integer b))

IntLVar(String extName, Integer a, Integer b)

Construct an unbound integer logical variable, with no external name (resp., with
external name extName) and with domain the multi-interval ‖[a..b]‖α. The associated
constraint is the empty conjunction.

IntLVar(MultiInterval m))

IntLVar(String extName, MultiInterval m)

Construct an integer logical variable, with no external name (resp., with external name
extName) and with domain the multi-interval m. The associated constraint is the empty
conjunction.

All such constructors may raise an exception NotValidDomainException if the domain
of the logical variable is empty. In this way, we anticipate a certain failure when trying to
solve a constraint involving that variable.

Example 15

• Create an integer logical variable v with domain {−1, 1..3}
MultiInterval m = new MultiInterval();

m.add(-1);

m.add(1);

m.add(2);

m.add(3);

IntLVar v = new IntLVar(m);

• Create an integer logical variable v with domain [MultiInterval.INF..0] (since
‖[MultiInterval.INF− 2..0]‖α = [−α− 2..0] ∩ Zα = [−α..0])

IntLVar v = new IntLVar(MultiInterval.INF - 2, 0);

Note that when the multi-interval is actually an interval, we use the more standard
notation with the square brackets to represent it.

• Raise an exception NotValidDomainException (since ‖{MultiInterval.SUP + 1}‖α =
{α+ 1} ∩ Zα = ∅)

IntLVar v = new IntLVar(MultiInterval.SUP + 1);

11.2 General utility methods

The class IntLVar provides all utility methods of the class LVar (see Section 3.2), suitably
adapted to IntLVar and Integer objects, along with a few other methods that take into
account the presence of domains and arithmetic constraints.

boolean equals(IntLVar lv)

Returns true iff this and lv are equal logical variables and they have equal domains.

Constraint getConstraint()
Returns the conjunction of constraints associated with this integer logical variable.

MultiInterval getDomain()
Returns the multi-interval representing the domain associated with this integer logical
variable.

31

void output()
Like output() of LVar, but if the variable is unbound also information about the
domain and the arithmetic constraint associated with this variable are printed.

11.3 Integer logical expressions

IntLVar objects can be created also by using the (integer) arithmetic operation methods
sum, sub, mul and div. These methods are invoked on IntLVar objects and returns IntLVar
objects; hence they can be concatenated to form compound arithmetic expressions.

IntLVar sum(Integer k)

Returns an integer logical variable X1 with an associated constraint X1 = X0+k ∧ C0,
where X0 is this logical variable and C0 is the associated constraint.

IntLVar sum(IntLVar v)

Returns an integer logical variable X1 with an associated constraint X1 = X0 + v ∧
Cv ∧ C0, where X0 is this logical variable, C0 is its associated constraint and Cv is
the constraint associated with the logical variable v.

IntLVar sub(Integer k)

IntLVar sub(IntLVar v)

Same as above, but with + replaced by − in the associated constraint.

IntLVar mul(Integer k)

IntLVar mul(IntLVar v)

Same as above, but with + replaced by ∗ in the associated constraint.

IntLVar div(Integer k)

Same as above, but with an associated constraint X1 = X0 / k ∧ C0 ∧ k 6= 0, where
X0 is this logical variable and C0 is the associated constraint.

IntLVar div(IntLVar v)

Same as above, but with an associated constraint X1 = X0 / v ∧ Cv ∧ C0 ∧ v 6= 0,
whereX0 is this logical variable, C0 is the associated constraint and Cv is the constraint
associated with the logical variable v.

IntLVar truncDiv(Integer k)

Same as div, but with the truncated division instead of exact division.

IntLVar truncDiv(IntLVar v)

Same as div, but with the truncated division instead of exact division.

IntLVar mod(Integer k)

Same as above, but with an associated constraint X1 = X0 mod k ∧ C0 ∧ k 6= 0,
where X0 is this logical variable and C0 is the associated constraint.

IntLVar mod(IntLVar v)

Same as above, but with an associated constraint X1 = X0 mod v ∧ Cv ∧ C0∧ v 6= 0,
whereX0 is this logical variable, C0 is the associated constraint and Cv is the constraint
associated with the logical variable v.

Note that the div operator refers to the “exact” integer division: a constraint of the form
z = x/y is satisfiable iff the constraint x = z ∗ y ∧ y 6= 0 is satisfiable. For example, z = x/y
with x = 7 and y = 2 is not satisfiable because the constraint 7 = z ∗ 2 is unsatisfiable for
each integer value that z could take.

32

Example 16

• Create an integer logical variable with an associated integer arithmetic constraint.

IntLVar x = new IntLVar("x");

IntLVar y = new IntLVar("y");

IntLVar z = x.sum(y.sub(1)).setName("z");

z.output();

Output:

_z = unknown -- Constraint: _z = _x + _N4 AND _N4 = _y - 1

where N4 represents the internal name of the IntLVar object created in correspondence
with the subexpression y.sub(1).

Note that the precedence order of operators is implicitly defined by invoking the corre-
sponding methods. For example, the expression x.sum(y).mul(2) allows us to represent
the arithmetic expression (x + y) · 2. If instead we wanted to build the term x + y · 2 we
should write something like x.sum(y.mul(2)).

11.4 Constraint methods

The class IntLVar provides methods for generating the usual arithmetic comparison con-
straints. Moreover, it provides some methods for generating other kinds of constraints such
as domain, membership, all-different and labeling constraints.

Integer comparison constraints

Constraint eq(Integer k)

Returns the constraint X0 = k ∧ C0, where X0 is this logical variable and C0 is its
associated constraint.

Constraint eq(IntLVar v)

Returns the constraint X0 = v ∧ C0 ∧ Cv, where X0 is this logical variable, C0 is its
associated constraint and Cv is the constraint associated with the logical variable v.

Constraint neq(Integer k)

Constraint neq(IntLVar v)

Same as above, but with = replaced by 6= in the generated constraint.

Constraint le(Integer k)

Constraint le(IntLVar v)

Same as above, but with = replaced by ≤ in the generated constraint.

Constraint lt(Integer k)

Constraint lt(IntLVar v)

Same as above, but with = replaced by < in the generated constraint.

Constraint ge(Integer k)

Constraint ge(IntLVar v)

Same as above, but with = replaced by ≥ in the generated constraint.

Constraint gt(Integer k)

Constraint gt(IntLVar v)

Same as above, but with = replaced by > in the generated constraint.

33

Example 17

• The method invocation

x.sub(1).lt(y.sum(3))

where x and y are unbound logical variables (with external names "x" and "y", respec-
tively), returns the constraint:

_N1 < _N2 AND _N1 = _x - 1 AND _N2 = _y + 3

where N1 and N2 in the < constraint represent the internal names of the IntLVar

objects created in correspondence with the subexpressions x.sub(1) and y.sum(3),
respectively.

Domain handling constraints

Constraint dom(Integer a, Integer b)

Returns the constraint X0 :: ‖[a..b]‖α ∧ C0, where X0 is this logical variable and C0

is its associated constraint. The domain constraint X0 :: ‖[a..b]‖α constrains X0 to
belong to the domain ‖[a..b]‖α.
If such domain is empty, an exception NotValidDomainException is raised.

Constraint dom(MultiInterval m)

Same as above, but with domain constraint X0 :: m.

Constraint dom(Set<Integer> s)

Same as above, but with domain constraintX0 :: ‖s‖α. Throws an exception NullPointerException

if some of the elements of s are null.

Constraint ndom(Integer a, Integer b)

Constraint ndom(MultiInterval m)

Same as the dom methods, except that these methods constrain this logical variable to
not belong to the domain ‖[a..b]‖α (resp., to the multi-interval m).

Membership constraints

Membership constraints involve integer logical variables and integer set logical variables (see
Section 12)

Constraint in(SetLVar X)

Constraint in(MultiInterval A)

Return the constraint this ∈ X (resp., the constraint this ∈ A). Throws an exception
NotValidDomainException if MultiInterval A is empty.

Constraint nin(SetLVar X)

Constraint nin(MultiInterval A)

Return the constraint this /∈ X (resp., the constraint this /∈ A).

Labeling constraints

Given n ≥ 0 integer logical variables v1, . . . , vn, labeling them means try to assign to each
variable an integer value belonging to its domain. For a more formal and comprehensive
explanation of labeling and its heuristics, see Appendix B.

34

In this section, we will only list the methods that the class IntLVar provides to support la-
beling. All these methods return an object of class Constraint, since the labeling operations
for one or more variables are treated as particular kinds of constraints over them.

Constraint label()
Constraint label(ValHeuristic val)

Label this variable, using the default value choice heuristic GLB (resp., using the value
choice heuristic val).

static Constraint label(List<IntLVar> vars)

static Constraint label(IntLVar... vars)

Label the variables in vars, using the default value and variable choice heuristics GLB
and LEFT MOST respectively.

static Constraint label (LabelingOptions lop, List<IntLVar> vars)

static Constraint label (LabelingOptions lop, IntLVar... vars)

Label the variables in vars, using the heuristics specified in lop.

12 Integer set logical variables: the class SetLVar

Integer set logical variables (or more briefly set variables) are a special case of the logical
variables described in Section 3, in which values are restricted to be set of integers. Like
integer logical variables, a set variable has a finite domain and a (possibly empty) set
constraint associated with it. Moreover, each set variable has an associated integer logical
variable which represents its cardinality.

The domain is represented as a set-interval, that is a lattice of integer sets (see Section
A.3 for a precise description of set-intervals in JSetL).

A domain for a set variable s can be specified when the variable s is created, and it
is automatically updated when the constraints possibly posted on s are solved in order to
maintain constraint consistency. For example, if X is a set variable with domain [∅..{1, 2, 3}]
and we add the cardinality constraint |X| = 3 then the domain of X will be restricted to
the singleton {{1, 2, 3}}, because the only set belonging to the domain of X which has
cardinality 3 is precisely {1, 2, 3}. Note that, when the domain of a variable is restricted
to a singleton {A}, the variable becomes bound to this value. Conversely, if the domain
is reduced to the empty set, it means that the constraints involving that variable are not
satisfiable. Moreover, when the domain of a set variable is specified or updated, the domain
of its cardinality variable is updated accordingly: if the domain of a set variable is the
set-interval [A..B] then the domain of its cardinality will be [|A|..|B|].

The constraints associated with set variables are generated by evaluating integer set
expressions, i.e., expressions built using the usual set operations (union, intersection, differ-
ence, complementation, cardinality, . . .) applied to set variables and integer set constants.
Moreover, when a set constraint is posted, it is possible that other constraints inferable
from it are added to the store. For example, when the constraint X ⊆ Y is posted, also the
constraint |X| ≤ |Y | is added to the store since X ⊆ Y implies that the cardinality of X is
less than or equal to the cardinality of Y .

In JSetL, an integer set logical variable is an instance of the class SetLVar, which extends
the class LVar. Values of such variables are set of integers, modeled by objects of class
MultiInterval (see Section A.2). Set-intervals, used to represent set variable domains, are
instances of the class SetInterval (see Section A.3). The cardinality variable associated

35

to a set variable is an instance of the class IntLVar (see Section 11). Constraints possibly
associated with integer set logical variables are instances of the class Constraint (see Section
14).

The class SetInterval provides two static fields INF and SUP to represent, respec-
tively, the minimum and maximum representable values for set intervals. In practice, INF
is the empty multi-interval, while SUP is fixed to be the multi-interval [-Interval.SUP

/ 2..Interval.SUP / 2]. As a notational convention (see Section A.3), we will use β
to denote the value of the bounds of the maximum multi-interval (currently fixed to be

Interval.SUP / 2), and we will use Zβ
def
= [−β..β] to represent such multi-interval. More-

over, if D is a set-interval, ‖D‖β will be used to indicate the normalization operation over
D which is defined as D ∩ P(Zβ), while CHβ is used to denote the convex closure operation
which is defined as min⊆{S ∈ Sβ : ‖D‖β ⊆ S}.

12.1 Constructors

SettLVar()

SetLVar(String extName)

Construct an unbound integer set logical variable, with no external name (resp., with
external name extName). The domain of this variable is the ’universe’ set-interval
[SetInterval.INF..SetInterval.SUP], which corresponds to the maximum repre-
sentable set-interval. The constraint associated with this variable is the empty con-
junction.

SetLVar(MultiInterval m)

SetLVar(String extName, MultiInterval m)

Construct an integer set logical variable, with no external name (resp., with external
name extName) and value m. The domain of this variable is ‖{m}‖β and the associated
constraint is the empty conjunction.

SetLVar(Set<Integer> s)

SetLVar(String extName, Set<Integer> s)

Construct an integer set logical variable, with no external name (resp., with external
name extName) and value s. The domain of this variable is ‖{s}‖β and the associated
constraint is the empty conjunction.

SetLVar(SetLVar l)

SetLVar(String extName, SetLVar l)

Construct an integer set logical variable, with no external name (resp., with external
name extName), equivalent to the set variable l. The domain and the constraint of
this variable are the domain and the constraint of the variable l .

SetLVar(MultiInterval a, MultiInterval b))

SetLVar(String extName, MultiInterval a, MultiInterval b)

Construct an unbound integer set logical variable, with no external name (resp., with
external name extName) and with domain the set-interval ‖[a..b]‖β . The associated
constraint is the empty conjunction.

SetLVar(Set<Integer> s, Set<Integer> t))

SetLVar(String extName, Set<Integer> s, Set<Integer> t)

Construct an unbound integer set logical variable, with no external name (resp., with

36

external name extName) and with domain the set-interval ‖[s..t]‖β . The associated
constraint is the empty conjunction.

SetLVar(SetInterval s))

SetLVar(String extName, SetInterval s)

Construct an integer set logical variable, with no external name (resp., with external
name extName) and with domain the set-interval s. The associated constraint is the
empty conjunction.

SetLVar(SetInterval s, Integer k))

SetLVar(String extName, SetInterval s, Integer k)

Construct an integer set logical variable, with no external name (resp., with external
name extName), with domain the set-interval s and cardinality k. The associated
constraint is the empty conjunction.

SetLVar(SetInterval s, MultiInterval m))

SetLVar(String extName, SetInterval s, MultiInterval m)

Construct an integer set logical variable, with no external name (resp., with external
name extName), with domain the set-interval s and cardinality variable domain m. The
associated constraint is the empty conjunction.

Note that, like integer logical variables, such constructors may raise an exception
NotValidDomainException if the domain of the set variable is empty. Moreover, observe
that some constructors allow set variables domain to be defined by using generic implemen-
tation of Set<Integer> interface, which can be different from the class MultiInterval.

Example 18

• Create a SetLVar with domain [∅..[1..3]].

MultiInterval a = new MultiInterval();

MultiInterval b = new MultiInterval(1, 3);

SetLVar x = new SetLVar(a, b);

• Create a SetLVar with domain [∅..{0, 1}] and cardinality 1 (in fact, CHβ({{0}, {1}, [2..β+
1]}) = min⊆{S ∈ Sβ : {{0}, {1}} ⊆ S} = [∅..{0, 1}]).

MultiInterval m = new MultiInterval(2, SetInterval.SUP.getLub() + 1);

MultiInterval m0 = new MultiInterval(0);

MultiInterval m1 = new MultiInterval(1);

Vector<MultiInterval> v = new Vector<MultiInterval>();

v.add(m);

v.add(m0);

v.add(m1);

SetInterval s = new SetInterval(v);

SetLVar x = new SetLVar(s, 1);

• Raise an exception NotValidDomainException (since ‖{[2..β + 1]}‖β = {[2..β + 1]} ∩
P(Zβ) = ∅)

MultiInterval m = new MultiInterval(2, SetInterval.SUP.getLub() + 1);

SetLVar x = new SetLVar(m);

37

12.2 General utility methods

The class SetLVar provides all utility methods of the class LVar (see Section 3.2), suitably
adapted to SetLVar and MultiInterval objects, along with a few other methods that take
into account the presence of domains and set constraints.

Constraint getConstraint()
Returns the conjunction of constraints associated with this integer set logical variable
(and with its cardinality).

SetInterval getDomain()
Returns the set-interval representing the domain associated with this integer set logical
variable.

void output()
Like output() of LVar, but if the variable is unbound also information about the
domain, the cardinality and the arithmetic constraint associated with this variable are
printed.

Moreover, SetLVar provides a method to compute the cardinality of the set possibly
bound to a set variable. Since this method returns an integer logical variable it can be used
within integer logical expressions and to post IntLVar constraints.

IntLVar card()
Returns an integer logical variable which represents the cardinality of this.

12.3 Integer set expressions

SetLVar objects can be created also by using the (integer) set operation methods compl,
intersect, union, diff, and singleton. These methods are invoked on SetLVar objects
and returns SetLVar objects; hence they can be concatenated to form compound set expres-
sions.

SetLVar compl()
Returns an integer set logical variable X1 with an associated constraint
X1 =∼X0 ∧ |X0|+ |X1| = |Zβ | ∧ C0, where X0 is this logical variable, ∼ is the set
complementation with respect to the universe Zβ and C0 is the constraint associated
with X0.

SetLVar diff(MultiInterval m)

Returns this.diff(new SetLVar(m)).
SetLVar diff(SetLVar v)

Returns an integer set logical variable X1 with an associated constraint
X1 = X0 \ v ∧ X1 ⊆ X0 ∧ v || X1 ∧ |X1| ≥ |X0| − |v| ∧ C0 ∧ Cv, where X0 is
this logical variable, C0 its associated constraint and Cv is the constraint associated
with the logical variable v. The constraint v || X1 corresponds to the set disjointness
between v and X1 (thus, their intersection must be empty).

SetLVar intersect(MultiInterval m)

Returns this.intersect(new SetLVar(m)).
SetLVar intersect(SetLVar v)

Returns an integer set logical variable X1 with an associated constraint

38

X1 = X0 ∩ v ∧ X1 ⊆ X0 ∧ X1 ⊆ v ∧ C0 ∧ Cv, where X0 is this logical variable,
C0 is its associated constraint and Cv is the constraint associated with the integer set
logical variable v.

static SetLVar singleton(IntLVar v)

Returns an integer set logical variable X such that X = {v}.

SetLVar union(MultiInterval m)

Returns this.union(new SetLVar(m)).
SetLVar union(SetLVar v)

Returns an integer set logical variable X1 with an associated constraint
X1 = X0 ∪ v ∧ X0 ⊆ X1 ∧ v ⊆ X1 ∧ |X1| ≤ |X0|+ |v| ∧ C0 ∧ Cv where X0 is
this logical variable, C0 its associated constraint and Cv is the constraint associated
with the integer set logical variable v.

Example 19

• Create an integer set logical variable with an associated set complement constraint:

SetLVar x = new SetLVar("x");

SetLVar y = x.compl().setName("y");

y.output();

Output:

_y = _N2 -- Domain: [{}..[-536870911..536870911]]

-- Size: [0..1073741823] -- Constraint: _N2 = compl(_x)

where N2 represents the internal name of the SetLVar object created in correspondence
with the subexpression x.compl().

12.4 Constraint methods

The class SetLVar provides methods for generating the usual set-theoretic constraints. More-
over, it allows to deal with set domains, labeling and partially specified sets.

Integer set constraints

Constraint disj(MultiInterval m)

Returns the constraint X0 || m ∧ C0, where X0 is this logical variable, C0 is its
associated constraint and || is the set disjointness.

Constraint disj(SetLVar v)

Returns the constraint X0 || v ∧ |X0|+ |v| ≤ |Zβ | ∧ C0 ∧ Cv, where X0 is this logical
variable, C0 is its associated constraint and Cv is the constraint associated with the
logical variable v.

Constraint eq(MultiInterval m)

Returns the constraint X0 = m ∧ C0, where X0 is this logical variable and C0 is its
associated constraint.

Constraint eq(SetLVar v)

Returns the constraint X0 = v ∧ |X0| = |v| ∧ C0 ∧ Cv, where X0 is this logical
variable, C0 is its associated constraint and Cv is the constraint associated with the
logical variable v.

39

Constraint neq(MultiInterval m)

Returns the constraint X0 6= m ∧ C0, where X0 is this logical variable and C0 is its
associated constraint.

Constraint neq(SetLVar v)

Returns the constraint X0 6= v ∧ C0 ∧ Cv, where X0 is this logical variable, C0 is its
associated constraint and Cv is the constraint associated with the logical variable v.

Constraint strictSubset(MultiInterval m)

Returns the constraint X0 ⊆ m ∧ |X0| < |m| ∧ C0, where X0 is this logical variable
and C0 is its associated constraint.

Constraint strictSubset(SetLVar v)

Returns the constraint X0 ⊆ v ∧ |X0| < |v| ∧ C0 ∧ Cv, where X0 is this logical
variable, C0 is its associated constraint and Cv is the constraint associated with the
logical variable v.

Constraint subset(MultiInterval m)

Returns the constraint X0 ⊆ m ∧ C0, where X0 is this logical variable and C0 is its
associated constraint.

Constraint subset(SetLVar v)

Returns the constraint X0 ⊆ v ∧ |X0| ≤ |v| ∧ C0 ∧ Cv, where X0 is this logical
variable, C0 is its associated constraint and Cv is the constraint associated with the
logical variable v.

Example 20

• Generate the constraint X ⊆ Y ∪ Z.

X.subset(Y.union(Z));

• Generate the constraint X ∩ Y = Y \X.

X.intersect(Y).eq(Y.diff(X));

• Generate the constraint X 6= {−2, 7}.
X.neq(new MultiInterval(-2).union(new MultiInterval(7)));

Domain handling constraints

Constraint dom(MultiInterval a, MultiInterval b)

Returns the constraint X0 :: ‖[a..b]‖β ∧ C0, where X0 is this logical variable and C0

is its associated constraint. The domain constraint X0 :: ‖[a..b]‖β constrains X0 to
belong to the domain ‖[a..b]‖β .
If such domain is empty, an exception NotValidDomainException is raised.

Constraint dom(SetInterval s)

Same as above, but with domain constraint X0 :: s.

40

Labeling constraints

Given n ≥ 0 integer set logical variables v1, . . . , vn, labeling them means try to assign to each
variable an integer set value belonging to its domain. For a more formal and comprehensive
explanation of labeling and its heuristics, see Appendix B.

In this section, we will only list the methods that the class SetLVar provides to support
labeling. As for class IntLVar, all these methods return an object of class Constraint,
since the labeling operations on one or more variables are treated as particular kinds of
constraints over them.

Constraint label()
Constraint label(ValHeuristic val)

Label this variable, using the default value choice heuristic GLB (resp., using the value
choice heuristic val) and the default set heuristic FIRST NIN.

static Constraint label(List<SetLVar> vars)

static Constraint label(SetLVar... vars)

Label the variables in vars, using the default heuristics GLB, LEFT MOST and FIRST NIN.

static Constraint label(LabelingOptions lop, List<SetLVar> vars)

static Constraint label(LabelingOptions lop, SetLVar... vars)

Label the variables in vars, using the heuristics specified in lop.

Partially specified integer sets

The class SetLVar allows to define partially specified integer sets according to the CLP(SET)
approach. Specifically, if X1, . . . , Xn are integer logical variables (n ≥ 0) and S and R are
integer set logical variables, then we can define and solve constraints of the form:

S = {X1, . . . , Xn | R}.

whose meaning is S = {X1} ∪ . . . ∪ {Xn} ∪ R. The following methods allow the user to
define this kind of constraints.

Constraint eq(IntLVar x)

Returns the constraint X0 = {x} ∧ C0, where X0 is this logical variable and C0 is its
associated constraint.

Constraint eq(IntLVar x, SetLVar R)

Returns the constraint X0 = {x|R} ∧ C0, where X0 is this logical variable and C0 is
its associated constraint.

Constraint eq(IntLVar[] vars)

Constraint eq(Collection<IntLVar> vars)

Returns the constraint X0 = {X1, . . . , Xn} ∧ C0, where X0 is this logical variable, C0

is its associated constraint and X1, . . . , Xn is the collection of integer logical variables
belonging to vars.

Constraint eq(IntLVar[] vars, SetLVar r)

Constraint eq(Collection<IntLVar> vars, SetLVar r)

Returns the constraint X0 = {X1, . . . , Xn | r} ∧ C0, where X0 is this logical vari-
able, C0 is its associated constraint and X1, . . . , Xn is the collection of integer logical
variables belonging to vars.

41

Note that, in the current implementation, constraints of the form S = {X1, . . . , Xn | R}
are simply unfolded in n union constraints:

S = S1 ∪ . . . ∪ Sn ∪ R where Si = {Xi} for each i = 1, . . . , n.

Moreover, in order to represent each singleton Si = {Xi}, the following constraints are added
to the constraint store, for i = 1, . . . , n:

Xi ∈ Si ∧ |Si| = 1.

13 Boolean logical variables: the class BoolLVar

Boolean logical variables are a special kind of LVar (see Section 3). As LVars, Boolean
logical variables may be unbound or bound and, when bound, their value is restricted to
being true or false. Moreover, a boolean logical variable has a (possibly empty) boolean
constraint associated with it, that is a flat representation of the boolean expression defining
that logical variable, in the same way as seen in 11.

13.1 Constructors

BoolLVar()

BoolLVar(String extName)

Construct an unbound BoolLVar with an empty constraint associated with it and with
default name (resp., with external name extName).

BoolLVar(boolean b)

BoolLVar(String extName, boolean b)

Construct a BoolLVar bound to the boolean value b, with an empty constraint asso-
ciated with it, and with default name (resp., with external name extName).

BoolLVar(BoolLVar b)

BoolLVar(String extName, BoolLVar b)

Construct a BoolLVar object, with default external name (resp., with external name
extName), equivalent to the BoolLVar object b. Same as to create an unbound
BoolLVar object x and to post and solve the constraint x.eq(b).

Example 21

• Create an unbound boolean logical variable with name "a":

BoolLVar a = new BoolLVar("a");

• Create a boolean logical variable with name "b" and value true:

BoolLVar b = new BoolLVar("b", true);

• Create a boolean logical variable which is equivalent to a

BoolLVar c = new BoolLVar(a);

42

13.2 General utility methods

BoolLVar inherits all methods of LVar, and provides some new methods of its own. Here is
a list of the methods that are overridden by BoolLVar.

BoolLVar clone()

Boolean getValue()

Constraint getConstraint() Returns the conjunction of constraints associated with this
boolean logical variable.

void output() Like output() of LVar, but if the variable is unbound also information
about the boolean constraint associated with this variable are printed.

BoolLVar setName(String name)

Below is a list of the methods that are declared in BoolLVar.

boolean isFalse()

Returns true if this boolean logical variable is bound and its value is false, returns false
otherwise.

boolean isTrue()

Returns true if this boolean logical variable is bound and its value is true, returns false
otherwise.

13.3 Boolean logical expression

The class BoolLVar provides methods for constructing boolean logical variables whose value
is equal to the result of a boolean expression containing other (possibly unbound) boolean
logical variables. Below is a list of such methods and a brief description of their meaning.

BoolLVar and(BoolLVar l)

Returns a BoolLVar which is the result of the expression this ∧ l.

BoolLVar or(BoolLVar l)

Returns a BoolLVar which is the result of the expression this ∨ l.

BoolLVar not()

Returns a BoolLVar which is the result of the expression ¬this .

BoolLVar implies(BoolLVar l)

Returns a BoolLVar which is the result of the expression this =⇒ l.

BoolLVar iff(BoolLVar l)

Returns a BoolLVar which is the result of the expression this ⇐⇒ l.

13.4 Constraint methods

There are three kinds of constraints that can be posted specifically for BoolLVar: equality,
inequality and labeling. Below is a list of the methods used to construct equality and
inequality constraints.

43

Constraint eq(BoolLVar b)

Constraint eq(Boolean b)

Return a constraint representing the equality between this and b. The returned
constraint is conjoined with the boolean constraints (possibly) associated with this

(and b).

Constraint neq(BoolLVar b)

Constraint neq(Boolean b)

Returns a constraint which represents the inequality between this and the parame-
ter b. The returned constraint is conjoined with the boolean constraints (possibly)
associated with this (and b).

Below is a list of the methods available for the labeling of boolean logical variables.

Constraint label()

Returns the constraint which forces this variable to be labeled with values from
{true, false}.

Constraint label(BoolHeuristic opt)

Constraint label(LabelingOptions opt)

Return the constraint which forces this variable to be labeled with values from {true, false},
according to the heuristic (resp., the labeling options) given by opt.

static Constraint label(List<BoolLVar> vars)

static Constraint label(BoolLVar... vars)

static Constraint label(LabelingOptions opt, List<BoolLVar> vars)

static Constraint label(LabelingOptions opt, BoolLVar... vars)

Return the constraint which forces each variable in vars to be labeled with values
from {true, false}, using the default labeling options (resp., the options given by opt).
Throw an exception NullPointerException if some of the variables in the collections
(or the parameters themselves) are null.

Example 22 Boolean constraints

Solver solver = new Solver();

BoolLVar d = a.or(b.and(c.not()));

solver.add(d.eq(true).and(a.label()));

solver.check();

now a is false and so is c

solver.nextSolution();

now a is true and so is c; there are no more solutions.

14 Constraints: the class Constraint

Constraints represent operations that can be applied to logical variables and logical collec-
tions, as well as to objects created through their derived sub-classes. These operations can
be performed even if the involved logical objects have no precise value associated with them.

A constraint in JSetL is an expression that can take one of the forms:

• atomic constraints:

44

– the empty constraint, denoted []

– e0.op (e1, . . . , en) or op (e0, e1, . . . , en) with n = 0, . . . , 3

where op is the name of the constraint and ei (0 ≤ i ≤ 3) are expressions whose
type depends on op. In particular op can be one of a collection of predefined
methods that implement general operations, such as equality, inequality, integer
comparison, as well as basic set-theoretic operations, such as membership, union,
intersection, etc.

• compound constraints:

– c1.and (c2) (conjunction)

– c1.or (c2) (disjunction)

– c1.orTest (c2) (disjunction)

– c1.impliesTest (c2) (implication)

where c1 and c2 are JSetL constraints and and, or, orTest, impliesTest represent the
logical conjunction (c1 ∧ c2), disjunction (c1 ∨ c2), and implication (c1 → c2), between
c1 and c2, respectively.

• negation constraint :

– c1.notTest () (negation)

where c1 is a JSetL constraint and notTest represents the negation of c1 (¬c1).

Constraints in JSetL are defined as instances of the class Constraint. Constraint

objects are created by using constructors and other methods of the class Constraint (e.g.,
and, or), as well as the result of calling a number of constraint methods supplied by the
classes implementing logical objects presented in the previous sections.

14.1 Constructors

Constraint()

Constructs the empty constraint (default name: "no name").

Constraint(String constrName, Object... arguments)

Constructs a constraint with name constrName and a sequence of 0 to Constraint.

MAX ARGUMENTS PER CONSTRAINT arguments, as specified by arguments. If too many
arguments are provided, an exception IllegalArgumentException is thrown.

constrName must be the name of a user-defined constraint. It can be any string value,
not beginning with character ’ ’. In fact, names beginning with ’ ’ are reserved for
library defined constraints (e.g., " eq", " nin", " union", etc.).

Example 23

• Create an empty constraint:

Constraint emptyConstraint = new Constraint();

• Create a user defined constraint with three arguments:

Constraint c = new Constraint("myConstraint","arg1",2,new LList("arg3"));

45

14.2 Static members

static final Constraint.MAX ARGUMENTS PER CONSTRAINT

The maximum number of arguments that can be used in the constructor of Constraint.
This number is currently set to 4.

static Constraint truec()

static Constraint falsec()

Return a constraint that is always (resp., never) satisfiable.

14.3 General utility methods

Constraint clone()
Returns a copy of this constraint, creating a clone of each atomic constraint in the
conjunction.

boolean equals(Constraint c)

boolean equals(Object o)

Return true if the argument is a constraint and all the atomic constraints occurring
in this constraint and in the argument constraint are ordinately equals. Atomic con-
straints are considered equals if all their non-null arguments are equal.

Object getArg(int i)

Returns the i-th argument of this constraint if 1 ≤ i ≤ k (where k is the number
of arguments of this constraint); null otherwise. Note that if applied to a constraint
conjunction, getArg(1) returns the first conjunct, whereas getArg(2) returns the rest
of the conjunction.

String getName()
Returns the name associated with this constraint. Note that if applied to a constraint
conjunction, getName() returns "and".

boolean isGround()
Returns true if this constraint does not contain any unbound logical object.

String toString()
Returns the string corresponding to the ”external view” of this constraint (e.g., using
standard infix arithmetic operators).

String toStringInternals()
Returns the string corresponding to the ”internal view” of this constraint, i.e.,

constraint(name,arg1,arg2,arg3,arg4),

where argi is either the i-th argument of this constraint (if 1 ≤ i ≤ k) or null (if
i > k), where k is the number of arguments of this constraint.

14.4 Global constraints

static Constraint allDifferent(List<?> objs)

static Constraint allDifferent(Object... objs)

Return a constraint c that is satisfied if and only if all elements ei in objs, n ≥ 0, are
different from each other, i.e., c =

∧
1≤i<j≤n ei 6= ej .

46

14.5 Meta-constraints

Meta-constraints allow to create new constraints starting from existing ones.

Constraint and(Constraint c)

Returns the constraint this ∧ c.

Constraint impliesTest(Constraint c)

Returns the constraint this→ c, where → is the logical implication.

Constraint notTest()
Returns the constraint ¬this, where ¬ is the logical negation.

Constraint or(Constraint c)

Constraint orTest(Constraint c)

Return the constraint this ∨ c.

The difference between or and orTest is that the latter is just a test over two ground
(i.e., completely specified) constraints, and it is simply left unchanged by the solver if either
c or this are not ground; conversely, the former is always evaluated even if c or this are
not ground, using backtracking to try the second constraint if the first fails. As an example,
the constraint:

x.eq(1).orTest(x.eq(2)).and(x.neq(1)).and(x.neq(2))

where x is an unbound logical variable, is simply left unchanged when the solver tries to
solve it, whereas the (logically equivalent) constraint

x.eq(1).or(x.eq(2)).and(x.neq(1)).and(x.neq(2))

is found to be unsatisfiable by the solver.

Similar considerations apply to constraints notTest and impliesTest.

In addition to the above constraint methods, the following method is also provided which
is logically equivalent to and but modifies the invocation object.

void add(Constraint c)

Modifies this constraint in such a way it represents this ∧ c.

14.6 Constraint methods in other classes

Constraints are generated also by a number of methods provided by classes implementing
logical variables and logical collections.

Specifically:

• constraints over LVar objects: see Sect. 3.3

• constraints over LList objects: see Sect. 4.4

• constraints over LPair objects: see Sect. 5.3

• constraints over LSet objects: see Sect. 6.4

• constraints over IntLSet objects: see Sect. 7.3

• constraints over LRel objects: see Sect. 8.4

47

• constraints over LMap objects: see Sect. 9.4

• constraints over IntLvar objects: see Sect. 11.4

• constraints over SetLVar objects: see Sect. 12.4.

• constraints over BoolLVar objects: see Sect. 13.4.

• constraints over Ris objects: see Sect. 10.4.

14.7 Constraint-solving methods

The class Constraint provides methods to solve constraints. Since these methods internally
use a temporary solver, they are subject to the same restrictions for the similar methods
in Solver (see Sect. 15.5). Moreover, since the local temporary solver is created when the
methods are called, only one of the following methods can be called on a single constraint,
and it can be called only once.

• boolean check()

Solves this constraint using a local solver; returns true if the constraint is satisfiable,
false otherwise.

• void solve()

Solves this constraint using a local solver; throws a Failure exception if the constraint
is not satisfiable.

• boolean test()

Solves this constraint using a local solver but leaving the constraint and all logical
objects occurring in it unchanged; returns true if the constraint is satisfiable, false
otherwise.

• LSet setof(LVar x)

Returns an LSet object whose elements are all possible solutions for x which satisfy
this constraint conjunction.

14.8 Control methods

The following methods are provided to support nondeterminism handling in conjunction
with user-defined constraint facilities (see Sect. 16). A brief description of each method can
be found in Sect. 16.3.

void fail()

int getAlternative()

void notSolved()

15 Constraint solving: the class Solver

Constraints are solved using a constraint solver. In JSetl a constraint solver can be created
as an instance of the class Solver. Basically, this class provides methods for posting con-
straints, i.e., adding constraints to the current collection of constraints (constraint store), as
well as inspecting, checking satisfiability, and finding (all) solutions of the posted constraints.

The class Solver and its methods are described in detail in this section.

48

15.1 Constructor

Solver()

Constructs a constraint solver, with the empty constraint in its constraint store.

15.2 Posting and inspecting constraints

Constraints can be posted to a specific constraint solver by adding them to its constraint
store. The collection of constraints in the constraint store is logically interpreted as a
conjunction of constraints. Each addition to the constraint store adds a conjunct to the
constraint conjunction represented by the store.

void add(Constraint c)

Adds a constraint c (either atomic or compound) to the constraint store of this solver.
No processing of the added constraint is performed at this stage.

void addChoicePoint(Constraint c)

See Sect. 16.3.

void clearStore()
Removes all constraints from the constraint store of this solver. It also removes all
choice-points possibly associated with the current collection of constraints.

Constraint getConstraint()
Returns the conjunction of non-solved constraints stored in the constraint store of this
solver.

void showStore()
Prints the conjunction of non-solved constraints stored in the constraint store of this
solver. Same as printing the result of this.getConstraint().

void showStoreAll()
Prints the conjunction of all the constraints stored in the constraint store of this
solver, including solved constraints which have been possibly left in the constraint
store. Basically used for debugging purposes.

void showStoreInternals()
Like showStoreAll but it prints constraints in their internal format (see Sect. 14,
method toStringInternals()). Basically used for debugging purposes.

int size()
Returns the number of non-solved constraints stored in the constraint store of this
solver.

Remark. The statement solver.add(c1.and(c2)....and(cn)) is equivalent to the se-
quence of statements:

solver.add(c1);
solver.add(c2);
. . .
solver.add(cn);

The order in which atomic constraints are added to the constraint store is completely
immaterial.

49

15.3 Checking constraint satisfiability

boolean check(Constraint c)

If C is the constraint currently in the constraint store of this solver, checks whether the
constraint C ∧ c is satisfiable or not, and returns true or false, respectively. If C ∧ c
is satisfiable, a viable constraint solution (i.e., a set of substitutions for the unbound
logical objects occurring in the constraint) is also computed, if possible. Computing
a solution may involve nondeterminism. The resulting constraint store will contain a
possibly simplified form of the constraint C ∧ c. Conversely, if C ∧ c is unsatisfiable,
all unbound variables in C ∧ c and the constraint store remain unchanged.

boolean check()
Same as check(c) in which c is the empty constraint.

void failure()
Raises a Failure exception.

void solve(Constraint c)

void solve()
Same as check(c) (resp., check()) but if the constraint C ∧ c (resp., C) is found to
be unsatisfiable, a Failure exception is raised.

boolean test()
Tests whether the constraint in the store is satisfiable or not, like check() does, but
it leaves everything unchanged after it returns.

15.4 Getting solutions

boolean nextSolution()
If issued after a check or a solve or another nextSolution, it tries to compute the
next solution for the constraint in the constraint store of this solver. If a solution
exists, it returns true; otherwise, it returns false. In the last case, the content of the
resulting constraint store is undefined.

LSet setof(LVar x, Constraint c)

If C is the constraint currently in the constraint store of this solver, returns the logical
set obtained by adding to it all solutions for x that makes the constraint C∧c satisfiable.
If C ∧ c is unsatisfiable, it returns the empty LSet. In all cases, all unbound variables
in C ∧ c remain unchanged.

LSet setof(LVar x)

Same as setof(x,c) in which c is the empty constraint.

int forEachSolution(Consumer<Integer> consumer)

If C is the constraint currently in the constraint store of this solver, runs the given
consumer for each solution of C passing the index of the solution (starting from 1) to
the consumer. At the end it returns the number of computed solutions.

Integer maximize(IntLVar x)

If C is the constraint currently in the constraint store of this solver, and x is a variable
in C, returns the maximum value of x for which C is satisfiable. If C is unsatisfiable,
returns java.lang.Integer.MIN VALUE/2 + 1.

50

Integer minimize(IntLVar x)

If C is the constraint currently in the constraint store of this solver, and x is a variable
in C, returns the minimum value of x for which C is satisfiable. If C is unsatisfiable,
returns java.lang.Integer.MAX VALUE.

Example 24

• Print all solutions.

LVar x = new LVar("x");

LSet s = LSet.empty().ins(3).ins(2).ins(1).setName("s");

Solver solver = new Solver();

solver.solve(x.in(s));

do {

x.output();

} while(solver.nextSolution());

System.out.println("No more solutions");

or

Solver solver = new Solver();

LVar x = new LVar("x");

LSet s = LSet.empty().ins(3).ins(2).ins(1);

solver.add(x.in(s));

solver.forEachSolution(()-> {x.output();});

System.out.println("no more solutions");

Executing this code will output:

x = 1

x = 2

x = 3

No more solutions

• Collect all solutions.

LVar x = new LVar("x");

LSet s = LSet.empty().ins(3).ins(2).ins(1).setName("s");

LSet r = solver.setof(x,x.in(s));

r.output();

Executing this code will output:

? = {1,2,3}

• No solutions.

LVar x = new LVar("x");

LSet s = LSet.empty().ins(2).ins(1).setName("s");

solver.add(x.neq(1).and(x.neq(2)));

LSet r = solver.setof(x,x.in(s)).setName("r");

r.output();

Executing this code will output:

r = {}

51

15.5 Restrictions

In order to guarantee the correct behaviour of the backtracking mechanism, the usage of
solvers is limited by some restrictions. If these restrictions are not met, the behaviour of the
solvers on which the restrictions are violated is not guaranteed to be correct (and in most
cases it will indeed be wrong).

There are three main kinds of restrictions.

• Thread restrictions. This restriction regards the concurrent executions in multiple
threads. All the logical objects appearing in the constraint store of a solver must be
created in the same thread as the solver itself. Moreover, each solver can only be used
(e.g., for adding and solving constraints) in the thread where it was created.

• Shared logical objects This restriction regards the sharing of logical objects among
different solvers. No logical objects must be shared among multiple solvers. When
a constraint is posted to a solver all the logical objects appearing in it should be
considered bound to that solver and thus not available for the posting of constraints
in other solvers.

15.6 Optimization Options

The class Solver provides some options that allow the user to specify different behaviours
of the solver (for example the usage of different rewrite rules for some constraints) in order
to increase performances or to get more explanatory answers.

Each instance of Solver contains an instance of the static class Solver.OptimizationOptions,
which can be retrieved by using the Solver method getOptimizationOptions() to check
which optimizations are enabled and to turn on or off each option. Here is a list of the
optimizations which are available for the general user.3

• fast comp rules: using different rewrite rules for relational composition (constraint
comp), may dramatically increase performance. This optimization is enabled by de-
fault.

• fast union rules: using different rewrite rules for union of logical sets (constraint
union), may increase performance if large sets are involved. Note that this optimiza-
tion does not currently work if instances of Ris are involved in union constraints and
in general may not work if they are present in the constraint store. For this reason
this optimization is not enabled by default.

• RIS expansion optimization: expands Ris (see Sect. 10.4) to logical sets (which may
have a Ris tail) whenever possible when solving constraints involving Ris objects.
This optimization is enabled by default since itmay greatly improve performances
with ground elements of the domain of Ris.

• Ris expansion cache: uses a cache to store the expansion of the ground elements of
Ris to improve performance. Adds a little overhead but greatly improve performance
of expandable recursive Ris. The default size of the cache is 1000.

The following methods of Solver.OptimizationOptions return true if the corresponding
optimization is enabled, false otherwise.

3Few other optimization options are mainly intended to be used by the library developers and are not
described in this manual.

52

boolean areFastCompRulesEnabled()

boolean areFastUnionRulesEnabled()

boolean isRisExpansionOptimizationEnabled()

boolean isRisExpansionCacheEnabled()

The following methods of Solver.OptimizationOptions take one boolean input and
enable (resp., disable) the corresponding optimization if it is true (resp., false).

void setUseFastCompRulesFlag(boolean flag)

void setUseFastUnionRulesFlag(boolean flag)

void setUseSetUnificationOptimizationsFlag(boolean flag)

void setUseRisExpansionCacheFlag(boolean flag)

void setRisExpansionCacheSize(int maxEntries)

16 User-defined constraints

JSetL allows the user to define new, possibly nondeterministic, constraints and to deal with
them as the built-in constraints.

16.1 The class NewConstraints

User-defined constraints are defined as part of a user class that extends the JSetL abstract
class NewConstraints. For example,

public class MyOps extends NewConstraints {

// public and private methods implementing new constraints

}

is intended to define a collection of new constraints implementing user defined operations.

Once objects of the new class have been created, one can use the user-defined constraints
contained in it as the built-in ones: user-defined constraints can be added to the constraint
store using the method add and solved using the Solver methods for constraint solving.

For example, the statements

MyOps myOps = new MyOps(solver);

solver.solve(myOps.c1(o1,o2));

create an object of type MyOps, called myOps, and use it to invoke and solve the constraint
c1 over two objects o1 and o2, using the constraint solver solver (provided c1 is one of the
constraints defined in MyOps).

53

16.2 Implementing new constraints

The actual implementation of the class that extends the JSetL abstract class NewConstraints
requires some programming conventions to be respected. The following example shows the
implementation of the class MyOps which offers two new constraints c1(o1,o2) and c2(o3),
where o1, o2, o3 are objects of type t1, t2, and t3, respectively.

Example 25 (Implementing new constraints)

public class MyOps extends NewConstraints{

public MyOps(Solver currentSolver) {

super(currentSolver);

}

public Constraint c1(t1 o1, t2 o2) {

return new Constraint("c1", o1, o2);

}

public Constraint c2(t3 o3) {

return new Constraint("c2", o3);

}

protected void user_code(Constraint c)

throws NotDefConstraintException {

if (c.getName() == "c1") c1(c);

else if(c.getName() == "c2") c2(c);

else throw new NotDefConstraintException();

}

private void c1(Constraint c) {

t1 x = (t1)c.getArg(1);

t2 y = (t2)c.getArg(2);

//implementation of constraint c1 over objects x and y

return;

}

private void c2(Constraint c) {

t3 x = (t3)c.getArg(1);

//implementation of constraint c2 over object x

return;

}

}

The one-argument constructor of the class MyOps initializes the field Solver in the super
class NewConstraints with a reference to the solver currently in use by the user program.

The other public methods simply construct and return new objects of class Constraint.
Each different constraint is identified by a string name which is specified as a parameter of
the constraint constructor.

The method user code, which is defined as abstract in NewConstraints, implements a
“router” that associates each constraint name with the corresponding user-defined constraint
method. It will be called by the solver during constraint solving.

54

Finally, the private methods provide the implementation of the new constraints. These
methods must, first of all, retrieve the constraint arguments, whose number and type depend
on the constraint itself.

The following is an example of the definition of a class derived from NewConstraints

that implements, among others, a new constraint absTest. absTest(x,y), where x and y

are IntLVar, is true if x is bound and y = |x|; if x is unbound, the constraint is simply left
unchanged.

Example 26 (New constraint absTest)

public class MathOps extends NewConstraints{

public MathOps(Solver s) {

super(s);

}

public Constraint absTest(IntLVar x, IntLVar y) {

return new Constraint("absTest", x, y);

}

protected void user_code(Constraint c)

throws NotDefConstraintException {

if (c.getName() == "absTest") absTest(c);

else if ... // other constraints implemented by MarhOps

else throw new NotDefConstraintException();

}

private void absTest(Constraint c) {

IntLVar x = (IntLVar)c.getArg(1);

IntLVar y = (IntLVar)c.getArg(2);

if (!x.isBound()) { // irreducible case

c.notSolved();

return;

};

if (x.getValue() >= 0)

Solver.add(x.eq(y)); // x = y

else

Solver.add(x.eq(new IntLVar(0).sub(y))); // x = 0 - y

return;

}

...

}

A possible use of the new constraint absTest is:

MathOps mathOps = new MathOps(solver);

IntLVar x = new IntLVar("x",-3);

IntLVar y = new IntLVar("y");

solver.check(mathOps.absTest(x,y));

y.output();

whose execution generates the output:

55

y = 3

A user-defined constraint is set by default to “solved” whenever it is processed by the
solver. “Solved” constraints possibly occurring in the store are simply ignored by the solver;
e.g., they are not printed at all by method showStore(). There are cases, however, in
which one would like to state that the constraint is still “unsolved”. For instance, in the
above example, if x is unbound then the constraint must be simply left unchanged in the
constraint store, in order to be possibly taken into account by subsequent call to the solver.
The following method of the class Constraint can be used for these purposes:

void notSolved()
Sets the solved flag of this constraint to false (i.e., this constraint is “unsolved”).

16.3 Exploiting nondeterminism

Implementation of user-defined constraints can exploit the nondeterministic facilities of
JSetL. In particular the following three methods are provided to support nondeterminism
handling:

int getAlternative() (in class Constraint)
Returns an integer associated with the invocation constraint c that can be used to
count nondeterministic alternatives within this constraint. Its initial value is 0. Each
time the constraint c is re-considered due to backtracking, the value returned by
getAlternative() is automatically incremented by 1.

void fail() (in class Constraint)
Raises an exception Fail. This exception is handled by the Solver which will back-
track if there are open choice points or throw an exception Failure otherwise.

void addChoicePoint(Constraint c) (in class Solver)
Adds a choice point to the alternative stack of the invocation solver. This allows the
solver to backtrack and re-consider the constraint c if a failure occurs subsequently.
Upon backtracking, the original constraint state is restored as before except for the
alternative counter that is incremented by 1.

The following is a nondeterministic version of the new constraint absTest(x,y) shown
in Example 26. In this case, if x is unbound, the constraint solving procedure opens two
nondeterministic alternatives: one in which x is assumed to be non-negative, and another
one in which x is assumed to be negative (the new version of the absolute value constraint
is simply called abs).

Example 27 (New constraint abs)

private void abs(Constraint c) {

IntLVar x = (IntLVar)c.getArg(1);

IntLVar y = (IntLVar)c.getArg(2);

switch (c.getAlternative()) {

case 0: // x >= 0 and x = y

Solver.addChoicePoint(c);

Solver.add(x.ge(0).and(x.eq(y)));

break;

case 1: // x < 0 and x = 0 - y

56

Solver.add(x.lt(0).and(x.eq(new IntLVar(0).sub(y))));

}

return;

}

A sample usage of the new constraint abs is:

IntLVar x = new IntLVar("x");

IntLVar y = new IntLVar("y",3);

solver.check(mathOps.abs(x,y));

x.output();

solver.nextSolution();

x.output();

whose execution generates the output:

x = 3

x = -3

References

[1] M. Cristiá and G. Rossi. A Decision Procedure for Sets, Binary Relations and Partial
Functions. in Computer Aided Verification - 28th International Conference (CAV 2016),
Lecture Notes in Computer Science, Vol. 9779, Springer, 179–198, 2016.

[2] A. Dal Palù, A. Dovier, E. Pontelli, and G. Rossi. Integrating Finite Domain Constraints
and CLP with Sets. In PPDP’03 — Proc. of the Fifth ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming, ACM Press, 219–229, 2003.

[3] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic programming.
ACM TOPLAS, 22(5), 861–931, 2000.

[4] A. Dovier, E. Pontelli, and G. Rossi. Set unification. Theory and Practice of Logic
Programming, 6:645–701, 2006.

[5] C. Gervet. Interval Propagation to Reason about Sets: Definition and Implementation
of a Practical Language. Constraints, 1(3):191–244, 1997.

[6] J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. Journal of Logic
Programming 19–20, 503–581, 1994.

A Data structures for finite domain modeling

The following classes represent three different finite domains: intervals, multi-intervals and
set-intervals. Their primary purpose is to model the domain of integer and integer set logical
variables (see Sections 11 and 12).

57

A.1 The class Interval

Given two integers a, b ∈ Z, the (integer) interval bounded by a and b is the set of integers:

[a..b]
def
= {x ∈ Z : a ≤ x ≤ b}

a is the GLB (Greatest Lower Bound) while b is the LUB (Least Upper Bound) of the
interval.

Fixed an integer constant α ≥ 0, we first define an universe Zα
def
= [−α..α] and then the

set Iα of all the intervals contained in Zα, that is:

Iα
def
= {[a..b] : a, b ∈ Zα}

The class Interval allows to represent and manipulate the intervals [a..b] ∈ Iα. First of
all, note that Zα is defined by:

• α = Interval.SUP
def
= Integer.MAX VALUE / 2 = 1073741823

• −α = Interval.INF
def
= -Interval.SUP = −1073741823.

In addition to static fields INF and SUP, this class also provides the static method universe()

which returns an Interval corresponding to the universe Zα.

Constructors

Before introducing class constructors, it is worth noting that intervals defined in this way
have two main restrictions. Indeed, they are:

• finite: (∀ I ∈ Iα)(∀ x ∈ I) − α ≤ x ≤ α

• convex : (∀ I ∈ Iα)(∀ x, y ∈ I) [x..y] ⊆ I.

Therefore, to overcome these limitations, two special operations are needed in order to
represent generic integer sets as intervals belonging to Iα:

• normalization: is an operation ‖·‖α : P(Z) −→ P(Zα) such that, for each A ⊆ Z,

‖A‖α
def
= A ∩ Zα.

• convex closure: is an operation CHα : P(Z) −→ Iα such that, for each A ⊆ Z,

CHα(A)
def
= min⊆{I ∈ Iα : ‖A‖α ⊆ I}.

Hence, the class constructors are defined as follows:

Interval()

Creates the empty interval ∅.

Interval(Integer a)

Creates the interval ‖{a}‖α.

Interval(Integer a, Integer b)

Creates the interval ‖[a..b]‖α.

Interval(Set<Integer> s)

Creates the interval CHα(s).

58

Example 28 (Interval constructors)

• Create an empty interval, since ‖{Interval.SUP + 1}‖α = {α+ 1} ∩ Zα = ∅
Interval i = new Interval(Interval.SUP + 1);

• Create the interval ‖[Interval.INF− 2..0]‖α = [−α− 2..0] ∩ Zα = [−α..0]

Interval i = new Interval(Interval.INF - 2, 0);

• Create the interval CHα({−3, 1, 0, 5}) = [−3..5]

HashSet<Integer> set = new HashSet<Integer>();

set.add(-3);

set.add(1);

set.add(0);

set.add(5);

Interval i = new Interval(set);

Set Operations

Since intervals are sets of integers, it is possible to define set operations on them. However,
note that only those operations which do not over-approximate the result have a public
interface.

boolean subset(Interval I)

Returns true iff this ⊆ I.

Interval intersect(Interval I)

Returns the interval corresponding to this ∩ I.

Interval sum(Interval I)

Returns the interval corresponding to this⊕ I, where in general:

[a..b]⊕ [c..d]
def
= ‖[a+ c..b+ d]‖α

Interval sub(Interval I)

Returns the interval corresponding to this	 I, where in general:

[a..b]	 [c..d]
def
= ‖[a− d..b− c]‖α

Interval opposite()

Returns the interval corresponding to 	this def
= {0} 	 this.

Other utility methods

boolean contains(Integer k)

Returns true iff k ∈ this.

boolean isEmpty()
Returns true iff this = ∅.

boolean isSingleton()
Returns true iff |this| = 1.

59

boolean isUniverse()
Returns true iff this = Zα.

int size()
Returns |this|.

Integer getGlb()
Returns the GLB of this if this 6= ∅, null otherwise.

Integer getLub()
Returns the LUB of this if this 6= ∅, null otherwise.

TreeSet<Integer> toSet()
Returns a java.util.TreeSet containing all the elements of this.

Iterator<Integer> iterator()
Returns an iterator over the elements of this, in ascending order.

Interval clone()
Returns a copy of this.

Interval equals(Object obj)

Returns true iff this is equals to obj.

String toString()
Returns a string representation of this.

A.2 The class MultiInterval

A multi-interval (of integers) is a set of integers M ⊂ Z defined by n ≥ 0 intervals
I1, I2, . . . , In ∈ Iα \∅ such that:

(i) M = I1 ∪ I2 ∪ . . . ∪ In

(ii) I1 ≺ I2 ≺ . . . ≺ In

where [a..b] ≺ [c..d]
def⇐⇒ b < c− 1.

The set of all the multi-intervals M ⊆ Zα will be named Mα.

Example 29 Examples of multi-intervals are:

• M = ∅

• M = [1..10]

• M = [−3..0] ∪ [5..5] ∪ [15..30]

For multi-intervals defined by n > 1 intervals we will use a simpler notation, where
intervals are simply listed in curly brackets and singleton intervals of the form [k..k] are
replaced by k. For example, the last multi-interval of the above example can be written as
{−3..0, 5, 15..30}.

It is important to observe that Mα = P(Zα); in other terms, every subset of Zα is
uniquely identified by a multi-interval in Mα (and viceversa).

60

The class MultiInterval allows to represent and manipulate all the multi-intervals
M ∈Mα.

Note that, although an interval is a particular case of multi-interval (is trivial to prove
that Iα ⊂Mα), MultiInterval is not a super-class of Interval.

Moreover, this class implements the Java interface Set<Integer>: for this reason, all the
methods of Set (and its super-interfaces Collection and Iterable) must be implemented
(for more details, see Java APIs specification).

Finally, like class Interval, MultiInterval has static fields INF and SUP, which repre-
sent −α and α respectively, and a static method universe(), which returns the universe
Zα.

Constructors

MultiInterval()

Creates the empty multi-interval ∅.

MultiInterval(Integer a)

Creates the multi-interval ‖{a}‖α.

MultiInterval(Integer a, Integer b)

Creates the multi-interval ‖[a..b]‖α.

MultiInterval(Set<Integer> s)

Creates the multi-interval corresponding to ‖s‖α.

MultiInterval(Collection<Interval> I)

Creates the multi-interval corresponding to I1 ∪ . . . ∪ In, if I is an interval collection
of the form [I1, . . . , In].

Example 30 (Multi-interval constructors)

• Create the multi-interval ‖{10, 5, 8, α+ 1,−1, 9, 0}‖α = {−1..0, 5, 8..10}
TreeSet<Integer> set = new TreeSet<Integer>();

set.add(10);

set.add(5);

set.add(8);

set.add(MultiInterval.SUP + 1);

set.add(-1);

set.add(9);

set.add(0);

MultiInterval m = new MultiInterval(set);

• Create the multi-interval [−2..4] ∪ [3..5] ∪∅ ∪ [10..20] = {−2..5, 10..20}
Vector<Interval> v = new Vector<Interval>();

v.add(new Interval(-2, 4));

v.add(new Interval(3, 5));

v.add(new Interval());

v.add(new Interval(10, 20));

MultiInterval m = new MultiInterval(v);

61

Set Operations

Since multi-intervals are all and only the subsets of Zα, it is possible to define on them the
same set operations applicable to Zα.

boolean subset(MultiInterval M)

Returns true iff this ⊆ M.

MultiInterval complement()
Returns the set complement of this with respect to the universe Zα.

MultiInterval complement(MultiInterval U)

Returns the set complement of this with respect to the universe U.

MultiInterval union(MultiInterval M)

Returns this ∪ M.

MultiInterval intersect(MultiInterval M)

Returns this ∩ M.

MultiInterval diff(MultiInterval M)

Returns this \ M.

MultiInterval sum(MultiInterval M)

Returns this� M, where in general:

A�B
def
= ‖{c ∈ Z : (∃a ∈ A)(∃b ∈ B) c = a+ b}‖α .

MultiInterval sub(MultiInterval M)

Returns this� M, where in general:

A�B
def
= ‖{c ∈ Z : (∃a ∈ A)(∃b ∈ B) c = a− b}‖α .

MultiInterval opposite()

Returns �this
def
= {0}� M.

Other utility methods

In addition to the utility methods seen for the class Interval and the methods inherited
from java.util.Set, MultiInterval offers the following methods:

Interval convexClosure()
Returns the convex closure CHα(this).

int getOrder()
Returns the order of this, i.e. the number of disjoint intervals which define it.

A.3 The class SetInterval

Given two sets of integers A,B ⊆ Z, the (integer) set-interval bounded by A and B is the
set of integer sets (more precisely, the lattice of integer sets):

[A..B]
def
= {X ⊆ Z : A ⊆ X ⊆ B}

62

A is the GLB (Greatest Lower Bound) while B is the LUB (Least Upper Bound) of the
set-interval.

Similarly to what done for integer intervals, we fix an integer constant β ≥ 0 and define

an universe Zβ
def
= [−β..β]. The set Sβ of all the set-intervals whose bounds are subsets of

Zβ is:

Sβ
def
= {[A..B] : A,B ⊆ Zβ}

The class SetInterval allows to represent and manipulate the set-intervals [A..B] ∈ Sβ .
First of all, it is worth noting that the integer sets belonging to set-intervals are modelled
by the class MultiInterval. This is not surprising: as seen in the previous section, multi-
intervals and sets of integers belonging to a fixed universe are in bijective correspondence.

Moreover, as for integer intervals, observe that set-intervals are:

• finite, even if they contain an exponential number of elements: |[A..B]| = 2|B|−|A|.
Thus, a normalization operator ‖·‖β : P2(Z) −→ P2(Zβ) such that:

‖D‖β
def
= D ∩ P(Zβ)

is needed.

• convex : a convex closure operator CHβ : P2(Z) −→ Sβ such that:

CHβ(D)
def
= min⊆{S ∈ Sβ : ‖D‖β ⊆ S}

is needed.

Since for each set-interval [A..B] ∈ Sβ we have that ∅ ⊆ A and B ⊆ Zβ = [−β..β],
SetInterval class will have two static fields:

• public static final MultiInterval INF = new MultiInterval();

• public static final MultiInterval SUP =

new MultiInterval(-Interval.SUP / 2, Interval.SUP / 2);

which represent, respectively, the minimum and the maximum value (according to the partial
order ⊆) that a set-interval element can take.

Obviously, INF is the empty set. Instead, SUP corresponds to Zβ : it means that the
fixed value of β is Interval.SUP / 2. Moreover, SetInterval provides the static method
universe() which returns the universe [∅..Zβ].

Constructors

SetInterval()

Creates the empty set-interval ∅.

SetInterval(MultiInterval A)

Creates the set-interval ‖{A}‖β .

SetInterval(MultiInterval A, MultiInterval B)

Creates the interval ‖[A..B]‖β .

SetInterval(Collection<MultiInterval> D)

Creates the interval CHβ(D).

63

Example 31 (Set-interval constructors)

• Create an empty set-interval, since ‖{[2..β + 1]}‖β = {[2..β + 1]} ∩ P(Zβ) = ∅
MultiInterval m = new MultiInterval(2, SetInterval.SUP.getLub() + 1);

SetInterval s = new SetInterval(m);

• Create the set-interval CHβ({{0}, {1}, [2..β+1]}) = min⊆{S ∈ Sβ : {{0}, {1}} ⊆ S} =
[∅..{0, 1}]

MultiInterval m = new MultiInterval(2, SetInterval.SUP.getLub() + 1);

MultiInterval m0 = new MultiInterval(0);

MultiInterval m1 = new MultiInterval(1);

Vector<MultiInterval> v = new Vector<MultiInterval>();

v.add(m);

v.add(m0);

v.add(m1);

SetInterval s = new SetInterval(v);

Other utility methods

boolean contains(MultiInterval M)

Returns true iff M ∈ this.

boolean isEmpty()
Returns true iff this = ∅.

boolean isSingleton()
Returns true iff |this| = 1.

boolean isUniverse()
Returns true iff this = [∅..Zβ].

double size()
Let A and B be the GLB and LUB of this, respectively. This method returns
|this| = 2|A|−|B| iff |B| − |A| ≤ Double.MAX EXPONENT = 1023; otherwise, it returns
Double.POSITIVE INFINITY.

MultiInterval getGlb()
Returns the GLB of this if this 6= ∅, null otherwise.

MultiInterval getLub()
Returns the LUB of this if this 6= ∅, null otherwise.

SetInterval intersect(SetInterval S)

Returns the set-interval this ∩ S.

SetInterval clone()
Returns a copy of this.

SetInterval equals(Object obj)

Returns true iff this is equals to obj.

String toString()
Returns a string representation of this.

64

Particular attention should be paid to method size(). Indeed, since a set-interval may
contain an exponential number of elements, the Java scalar type double is used to represent
its size. However, note that if a set-interval is too big (e.g., the universe [∅..Zβ]) the constant
value Double.POSITIVE INFINITY is returned.

B Data structures for dealing with labeling

As is usually the case with finite domain constraint solvers, the JSetL constraint solver is not
complete. Specifically, if the constraint store contains constraints over IntLVar and SetLVar

objects, the solver does not ensure that all the constraints belonging to it are satisfiable.
In order to check satisfiability and find one (or all) possible solution(s), suitable research
strategies are therefore needed: labeling is one of these.

Given n ≥ 0 logical variables v1, . . . , vn, labeling them means trying to assign to each
variable a value belonging to its domain.

Obviously, considering every possible labeling of all the variables of the constraint store,
we obtain completeness (i.e, every possible value assignment to the variables is computed).
However, the excessive simplicity of this method implies a not reasonable computational
complexity. For this reason, labeling is improved by special heuristics which allow to reduce
the search space. Specifically:

• Variable Choice Heuristics: determine the order in which variables are selected for
assignment;

• Value Choice Heuristics: determine the order in which domain values are assigned to
a selected variable.

The next subsections will describe techniques and data structures for dealing with labeling
on IntLVar and SetLVar objects in JSetL.

B.1 Labeling on integer logical variables

JSetL provides three data structures for modeling choice heuristics: the enumerations
VarHeuristic and ValHeuristic, and the class LabelingOptions.

The enumeration VarHeuristic

VarHeuristic is a Java enumeration that implements the possible variable choice heuristics
for a given collection x1, . . . , xn of IntLVar’s. Such enum consists of the following fields:

LEFT MOST

Selects the leftmost variable x1.

RIGHT MOST

Selects the rightmost variable xn.

MID MOST

Selects the midmost variable xk, where k =
⌊n

2

⌋
.

MIN

Selects the leftmost variable with the smallest GLB.

MAX

Selects the leftmost variable with the greatest LUB.

65

FIRST FAIL

Selects the leftmost variable with the smallest domain.

RANDOM

Selects a variable xk, where k is a pseudorandom equidistributed value in {1, . . . , n}.

Example 32 Let us consider three integer logical variables x, y and z with associated do-
mains Dx = {1..10, 28..30}, Dy = {1..50, 100, 1000} and Dz = [0..40], respectively. Let us
see how the variable choice heuristics work:

• LEFT MOST: selects the variable x

• MID MOST: selects the variable y

• RIGHT MOST: selects the variable z

• MIN: selects the variable z

• MAX: selects the variable y

• FIRST FAIL: selects the variable x

• RANDOM: selects a variable v ∈ {x, y, z} such that P[v = x] = P[v = y] = P[v = z] = 1
3 .4

The enumeration ValHeuristic

ValHeuristic is a Java enumeration that implements the possible value choice heuristics
for a selected IntLVar x with domain the multi-interval Dx = I1 ∪ . . . ∪ In. Such enum

consists of the following fields:

GLB

Selects the GLB of Dx.

LUB

Selects the LUB of Dx.

MID MOST

Selects the middle point

⌊
I−k + I+k

2

⌋
of the ’central’ interval Ik, where k =

⌊n
2

⌋
.

MEDIAN

Selects the median value of Dx (note that if |Dx| is even, the minimum between the
two median values of Dx will be selected).

EQUI RANDOM

Selects a pseudorandom equidistributed value in Dx.

RANGE RANDOM

Selects a pseudorandom equidistributed value in Ik, where k is a pseudorandom
equidistributed value in {1, . . . , n}.

MID RANDOM

Selects the midpoint of an interval Ik, where k is a pseudorandom equidistributed
value in {1, . . . , n}.

4 The notation P[E] indicates the probability that a given event E occurs.

66

Note that, unlike EQUI RANDOM, RANGE RANDOM does not select an equidistributed value
in Dx: the probability that a value d ∈ Dx will be chosen is inversely proportional to the
size of the interval Ik to which d belongs. However, if Dx is an interval then EQUI RANDOM

and RANGE RANDOM are in fact the same heuristic.
MID RANDOM is an hybrid solution: first a random interval Ik is chosen and then the

midpoint of Ik is selected. Thus, each midpoint has a probability 1/n to be selected. Note
that ifDx is an interval then MID RANDOM, MID MOST and MEDIAN are in fact the same heuristic.

Example 33 Let us consider again the integer logical variables x, y and z with associated
domains Dx = {1..10, 28..30}, Dy = {1..50, 100, 1000} and Dz = [0..40] of Example 32. Let
us see now how the value choice heuristics work on them, indicating with λ(v) the selected
value for each variable v ∈ {x, y, z}.

GLB : λ(x) = 1 λ(y) = 1 λ(z) = 0

LUB : λ(x) = 30 λ(y) = 1000 λ(z) = 40

MID MOST : λ(x) = 5 λ(y) = 100 λ(z) = 20

MEDIAN : λ(x) = 7 λ(y) = 26 λ(z) = 20

Moreover, for each a ∈ Dx, b ∈ Dy e c ∈ Dz we have that:

EQUI RANDOM : P[λ(x) = a] =
1

13

P[λ(y) = b] =
1

52

P[λ(z) = c] =
1

41

67

RANGE RANDOM : P[λ(x) = a] =

1

20
, se a ∈ [1..10]

1

6
se a ∈ [28..30]

P[λ(y) = b] =

1

150
, se b ∈ [1..50]

1

3
, se b = 100

1

3
se b = 1000

P[λ(z) = c] =
1

41

MID RANDOM : P[λ(x) = a] =

1

2
, if a ∈ {5, 29}

0 otherwise

P[λ(y) = b] =

1

3
, if b ∈ {25, 100, 1000}

0 otherwise

λ(z) = 20

The class LabelingOptions

The class LabelingOptions allows the user to set up the labeling heuristics by properly
setting its public fields, which are:

VarHeuristic var
The variable choice heuristic.

ValHeuristic val
The value choice heuristic.

SetHeuristic set
For labeling on SetLVar’s (see Section B.2).

This class provides only one constructor LabelingOptions() that initializes such fields to
their default values, which are:

• var = LEFT MOST

• val = GLB

• set = FIRST NIN

Example 34 The statements

68

LabelingOptions lop = new LabelingOptions();

lop.var = VarHeuristic.FIRST_FAIL;

lop.val = ValHeuristic.MEDIAN;

set the variable choice heuristic to FIRST FAIL and the value choice heuristic to MEDIAN.
Note that, since the field set is not modified, lop.set will retain the default value

SetHeuristic.FIRST NIN.

Objects of type LabelingOptions are used as parameters for labeling constraint methods
(see Sections 11.4 and 12.4).

B.2 Labeling on integer set logical variables

In addition to the data structures presented in the previous section, JSetL provides the
enumeration SetHeuristic.

Before introducing such enumeration, it is important to note that labeling on set variables
is quite different from labeling on integer variables. Indeed, while for integer logical variables
each labeled variable x is directly instantiated with a value k belonging to its domain, for
set variables the same approach turns out to be impracticable. This is because each set
variable X with domain [A..B] could be instantiated by an exponential number of elements
(precisely 2|B|−|A|) belonging to its domain.

Thus, given n set variables X1, . . . , Xn to be labeled, the following approach is used:

• a variable X ∈ {X1, . . . , Xn} is selected according to a certain variable choice heuristic

• an integer value k ∈ B \ A, where [A..B] is the domain of X, is selected according to
a certain value choice heuristic. Note that the integer set B \A corresponds to all the
integer values that could belong to X (but they do not necessarily belong to it)

• the (meta) constraint k ∈ X ∨ k /∈ X is added to the store and solved. Note that
such logic disjunction is nondeterministic: thus, a choice must be made about which
constraint will be solved first, depending on the value of a certain set choice heuristic.

In this way, the domain of a set variable is refined (by adding values to its GLB or removing
values from its LUB) until the variable results (possibly) bound.

The enumeration SetHeuristic

Variable and value choice heuristics are modelled by using the enumerations VarHeuristic
and ValHeuristic, respectively (see Section B.1). To decide which (non-)membership con-
straint will be solved first, instead, the enumeration SetHeuristic is used. Such enum

consists of the following fields:

FIRST IN

The membership constraint k ∈ X is solved first.

FIRST NIN

The non-membership constraint k /∈ X is solved fist.

As for the integer logical variables, the class LabelingOptions allows the labeling heuris-
tics to be setted up by properly setting its public fields. Remind that the default value for
the set field in class LabelingOptions is SetHeuristic.FIRST NIN.

69

Example 35 The statements

LabelingOptions lop = new LabelingOptions();

lop.var = VarHeuristic.RANDOM;

lop.val = ValHeuristic.LUB;

lop.set = SetHeuristic.FIRST_IN;

set the variable choice heuristic to RANDOM, the value choice heuristic to LUB, and the set
choice heuristic to FIRST IN.

70

	Introduction
	JSetL class hierarchy
	Logical variables: the class LVar
	Constructors
	General utility methods
	Constraint methods

	Logical lists: the class LList
	Constructors
	Creating new (bound) logical lists
	General utility methods
	Basic methods
	Logical collection methods

	Constraint methods

	Logical pairs: the class LPair
	Constructors
	General utility methods
	Constraint methods

	Logical sets: the class LSet
	Constructors
	Creating new (bound) logical sets
	General utility methods
	Basic methods
	Logical collection methods

	Constraint methods

	Integer logical sets: the class IntLSet
	Constructors
	General utility methods
	Constraint methods

	Logical binary relations: the class LRel
	Constructors
	Creating new (bound) logical binary relations
	General utility methods
	Constraint methods

	Logical maps: the class LMap
	Constructors
	Creating new (bound) logical maps
	General utility methods
	Constraint methods

	Restricted intensional sets: the class Ris
	Constructors
	General utility methods
	RIS methods
	Constraint methods

	Integer logical variables: the class IntLVar
	Constructors
	General utility methods
	Integer logical expressions
	Constraint methods

	Integer set logical variables: the class SetLVar
	Constructors
	General utility methods
	Integer set expressions
	Constraint methods

	Boolean logical variables: the class BoolLVar
	Constructors
	General utility methods
	Boolean logical expression
	Constraint methods

	Constraints: the class Constraint
	Constructors
	Static members
	General utility methods
	Global constraints
	Meta-constraints
	Constraint methods in other classes
	Constraint-solving methods
	Control methods

	Constraint solving: the class Solver
	Constructor
	Posting and inspecting constraints
	Checking constraint satisfiability
	Getting solutions
	Restrictions
	Optimization Options

	User-defined constraints
	The class NewConstraints
	Implementing new constraints
	Exploiting nondeterminism

	References
	Data structures for finite domain modeling
	The class Interval
	The class MultiInterval
	The class SetInterval

	Data structures for dealing with labeling
	Labeling on integer logical variables
	Labeling on integer set logical variables

