
Rewrite Rules for a Solver for

Restricted Intensional Sets

Maximiliano Cristiá
Universidad Nacional de Rosario

Gianfranco Rossi and Andrea Fois
Università di Parma

June 26, 2019

Abstract

This document lists in a compact way all the rewrite rules used in the constraint solver
for LRIS , a constraint language which provides both extensional and intensional finite sets
(namely, restricted intensional sets), along with basic operations on them. The constraint
solver for LRIS takes the form of a rewrite system acting on LRIS formulas, i.e., quantifier-
free conjunctions and disjunctions of positive and negative LRIS constraints.

1 Basic definitions and notation

LRIS is parametric w.r.t. a first-order theory X , along with its first-order logic language LX
and its (complete) solver SATX . X is assumed to contain at least the predicate symbols =X
and 6=X which are interpreted as the identity and not identity in the interpretation domain of
X , respectively.
LRIS terms are called set terms, while LX terms are called non-set terms. Set terms can

have the following forms: a) the empty set, noted ∅; b) extensional sets, noted {x t A}, where
x, called element part, is a non-set term, and A, called set part, is a set term; and c) restricted
intensional sets (RIS), noted {c : D | F • P [c]}, where c, called control term, is a non-set term;
D, called domain, is an extensional set term (either variable or not); F , called filter, is a X -
formula; and P , called pattern, is a non-set term containing c. Variables which range over set
terms (resp., non-set terms) are called set variables (resp., non-set variables).

A RIS term is a variable-RIS if its domain is a variable; otherwise it is a non-variable RIS.
Moreover, we say that a RIS term is simple if its control term is identical to its pattern (i.e., it
has the form {c : D | F • c}).

The set of primitive predicate symbols Π for LRIS is {=, 6=,∈, /∈, un, ‖}. A π-constraint is
any LRIS literal based on π. A rewrite rule for π, π ∈ Π, is a rewrite rule of the form:

φ→ Φ

where φ is a π-constraint and Φ is a LRIS formula. If Φ has more than one disjunct then the rule
is non-deterministic. Conjunctions occurring in Φ have higher precedence than disjunctions.

A rewriting procedure for π-constraints consists of the collection of all the rewrite rules for
π-constraints. The following subsections present the rewriting procedure for all primitive LRIS
constraints. For each rewriting procedure, the solver selects rules in the order they are presented.
The first rule whose left-hand side matches the input π-constraint c is used to rewrite c. If no
rules applies to c, then c is left unchanged (i.e., c is irreducible).

Notational conventions

• t, u, c, d (possibly subscripted) stand for any non-set term; A,B,C,D stand for any set
term (extensional set or RIS, variable or not); Ā, B̄, C̄, D̄, represent either set variables
or variable-RIS. X,Y,N are set variables (not RIS), while x, y, n are non-set variables.
∅ represents an empty set or a RIS with empty domain. X represents a set variable X
or a variable-RIS whose domain is X or a RIS whose domain is a set term containing
X as its innermost variable set part (e.g., {t0, ..., tn t X } stands for {t0, ..., tn t X}, or
{t0, ..., tn t {X | F • P}}, or {t0, ..., tn t {{u0, ..., um tX} | F • P}}).

• variable names n and N (possibly with sub and superscripts) are used to denote fresh
variables (non-set variables and set variables, respectively);

1

• {t1, t2, . . . , tntt} (resp., {t1, t2, . . . , tn}) is a shorthand for {t1t{t2t · · · {tntt} · · ·}} (resp.,
{t1 t {t2 t · · · {tn t ∅} · · ·}})

• t1 ≡ t2 (resp., t1 6≡ t2), for any terms t1 and t2, means that t1 is (resp., is not) of the same
(syntactic) form as t2;

• vars(t1, . . . , tn) denotes the set of variables occurring in t1, . . . , tn;

• sσ, where s is any term (or formula) and σ = {x1 7→ t1, . . . , xn 7→ tn} is a substitution,
denotes the term obtained by applying the substitution σ to s.

• The notation F (t) ∧ n = P (t), used in the rewriting of a constraint involving the RIS
{c : D | F • P}, is a shorthand for the constraint generated by the following procedure:

let σ be {x1 7→ n1, ..., xk 7→ nk}, {x1, ..., xk} = vars(c) and ni fresh variables;
φ← SATX (cσ = t);
if φ 6= false

then return SATX (φ ∧ Fσ ∧ n = Pσ);
else return false;

Similarly, the notation ¬F (t) is a shorthand for the constraint generated by the following
procedure:

let σ be {x1 7→ n1, ..., xk 7→ nk}, {x1, ..., xk} = vars(c) and ni fresh variables;
φ← SATX (cσ = t);
if φ 6= false

then return SATX (φ ∧ ¬Fσ);
else return true;

Note that when the control term c is a variable, say x, then SATX (cσ = t) is surely true
and the effect of the above procedures amounts to simply call SATX on a formula based
on F and P where all occurrences of (the renamed variant of) x are replaced by t.

• {D | F • P} is a shorthand for {c : D | F • P}, for some control term c.

2

2 Equality (=)

1. ∅ = ∅ → true

2. X = X → true

3. If A is not a variable and A 6≡ {{d tD} | F • P}: [symmetrical case (rules 4, 5, 6)]
A = X → X = A

4. If X ∈ vars(t0, ..., tn):
X = {t0, ..., tn tA} → false

5. X = {t0, ..., tn tX } → X = {t0, ..., tn tX {X 7→N}} [special case]

6. If X occurs in other constraints in the input formula and A 6≡ {{d tD} | F • P}:
X = A→ X = A and substitute X by A in the rest of the formula.

7. {t tA} = ∅ → false

8. ∅ = {t tA} → false [symmetrical case (rule 7)]

9. {t0, ..., tm tX } = {u0, ..., un tX } → [special case]
t0 = uj ∧ {t1, ..., tm tX } = {u0, ..., uj−1, uj+1, ..., un tX }
∨ t0 = uj ∧ {t0, ..., tm tX } = {u0, ..., uj−1, uj+1, ..., un tX }
∨ t0 = uj ∧ {t1, ..., tm tX } = {u0, ..., un tX }
∨ X = {t0 tN} ∧ {t1, ..., tm tX {X 7→N}} = {u0, ..., un tX {X 7→N}}

10. {t tA} = {u tB} →
t = u∧A = B ∨ t = u∧ {ttA} = B ∨ t = u∧A = {utB} ∨A = {utN} ∧ {ttN} = B

11. {{d tD} | F • P} = ∅ → ¬F (d) ∧ {D | F • P} = ∅

12. {{d tD} | F • P} = B →
F (d) ∧ n = P (d) ∧ {n t {D | F • P}} = B
∨ ¬F (d) ∧ {D | F • P} = B

13. {X | F • P} = {u0, u1, ..., un tX } → [special case]

X = {n tN} ∧ F (n) ∧ u0 = P (n)∧ {N | F • P} = {u1, ..., un tX {X 7→N}}

14. {X | F • P} = {t tA} → X = {d tN} ∧ F (d) ∧ t = P (d) ∧ {N | F • P} = A

15. i. A = {{d tD} | F • P} → {{d tD} | F • P} = A [symmetrical case (rules 11, 12)]

ii. {t tA} = {X | F • P} → {X | F • P} = {t tA} [symmetrical case (rules 13, 14)]

16. t1 = t2 → t1 =X t2

Solved forms

1. X = A, A is not a RIS term and X does not occur in A nor in other constraints.

2. X = {Y | F • P}, and X does not occur in other constraints

3. {X | F • P} = ∅ or ∅ = {X | F • P}

4. {X | F • P} = {Y | G •Q}

3

3 Inequality (6=)

1. ∅ 6= ∅ → false

2. X 6= X → false

3. If A is neither a variable nor a RIS [symmetrical case (rules 4, 5)]
A 6= X → X 6= A

4. If X /∈ vars(t1, ..., tn): [special case]
X 6= {t1, ..., tn tX } → (t1 /∈ X ∨ ... ∨ tn /∈ X)

5. If X ∈ vars(t1, ..., tn):
X 6= {t1, ..., tn tA} → true

6. ∅ 6= {t tA} → true

7. {t tA} 6= ∅ → true [symmetrical case (rule 6)]

8. {t tA} 6= {u tB} →
n ∈ {t tA} ∧ n /∈ {u tB}
∨ n /∈ {t tA} ∧ n ∈ {u tB}

9. {D | F • P} 6= A→
n ∈ {D | F • P} ∧ n /∈ A
∨ n /∈ {D | F • P} ∧ n ∈ A

10. A 6= {D | F • P} → {D | F • P} 6= A [symmetrical case (rule 9)]

11. t1 6= t2 → t1 6=X t2

Solved forms

1. X 6= ∅

2. X 6= {t t A}, and X does not occur in {t t A} nor as the domain of a RIS which is the
argument of a = or 6∈ or un constraint in the input formula.

4

4 Set membership (∈)

1. t ∈ ∅ → false

2. t ∈ {u tA} → t = u ∨ t ∈ A

3. t ∈ X → X = {t tN}

4. t ∈ {D | F • P} → d ∈ D ∧ F (d) ∧ t = P (d)

Solved forms
none

5 Not set membership (/∈)

1. t /∈ ∅ → true

2. t /∈ {u tA} → t 6= u ∧ t /∈ A

3. If X ∈ vars(t):
t /∈ X → true

4. t /∈ {{d tD} | F • P} →
F (d) ∧ n = P (d) ∧ t 6= n ∧ t /∈ {D | F • P}
∨ ¬F (d) ∧ t /∈ {D | F • P}

Solved forms

1. t /∈ X, and X does not occur in t

2. t /∈ {X | F • P}

5

6 Disjointness (‖)

1. X ‖ X → X = ∅

2. A ‖ ∅ → true

3. ∅ ‖ A→ true [symmetrical case (rule 2)]

4. A ‖ {t tB} → t /∈ A ∧A ‖ B

5. {t tB} ‖ A→ t /∈ A ∧A ‖ B [symmetrical case (rule 4)]

6. A ‖ {{d tD} | F • P} →
F (d) ∧ n = P (d) ∧ n /∈ A ∧A ‖ {D | F • P}
∨ ¬F (d) ∧A ‖ {D | F • P}

7. {{d tD} | F • P} ‖ A→ [symmetrical case (rule 7)]
F (d) ∧ n = P (d) ∧ n /∈ A ∧ {D | F • P} ‖ A
∨ ¬F (d) ∧ {D | F • P} ‖ A

Solved forms

1. Ā ‖ B̄, and Ā 6≡ B̄ when Ā and B̄ are set variables.

6

7 Union (un)

1. un(X,X,B)→ X = B

2. un(A,B, ∅)→ A = ∅ ∧B = ∅

3. un(∅, A,B)→ B = A

4. un(A, ∅, B)→ B = A [symmetrical case (rule 3)]

5. un({t t C}, A, B̄)→
{t t C} = {t tN1} ∧ B̄ = {t tN} ∧ t /∈ A ∧ un(N1, A,N)
∨ {t t C} = {t tN1} ∧ B̄ = {t tN} ∧A = {t tN2} ∧ un(N1, N2, N)

6. un(A, {t t C}, B̄)→ [symmetrical case (rule 5)]
{t t C} = {t tN1} ∧ B̄ = {t tN} ∧ t /∈ A ∧ un(N1, A,N)
∨ {t t C} = {t tN1} ∧ B̄ = {t tN} ∧A = {t tN2} ∧ un(N1, N2, N)

7. un(A,B, {t t C})→
{t t C} = {t tN} ∧A = {t tN1} ∧ un(N1, B,N)
∨ {t t C} = {t tN} ∧B = {t tN1} ∧ un(A,N1, N)
∨ {t tC} = {t tN} ∧A = {t tN1} ∧B = {t tN2} ∧ un(N1, N2, N) ∧{t tC} = {t tN}

8. If at least one of A,B,C is not a variable nor a variable-RIS:
un(A,B,C)→
un(T1(A), T2(B), T3(C)) ∧K1(A) ∧K2(B) ∧K3(C)

where Ti is a set-valued function and Ki is a constraint-valued function defined as follows:

• Ti(S) = S, if S is either a variable or the empty set or an extensional set term or a
variable-RIS

• Ti({∅ | F • P}) = ∅
• Ti({{d tD} | F • P}) = Ni

• Ki(S) = true, if S is either a variable or the empty set or an extensional set term or
a variable-RIS or a RIS with empty domain

• Ki({{d tD} | F • P}) =
F (d) ∧ n = P (d) ∧Ni = {n t {D | F • P}}
∨ ¬F (d) ∧Ni = {D | F • P}

Solved forms

1. un(Ā, B̄, C̄), and Ā 6≡ B̄ when Ā and B̄ are set variables.

7

8 Elimination of 6=-constraints

The following rewrite rule is applied to the irreducible formula returned at the end of the
rewriting loop performed by the solver, in order to eliminate all inequalities of the form X 6= A,
where X is the domain of a variable-RIS, still possibly occurring in some constraints of the
computed formula.

1. If X is the argument of a un-constraint or the domain of a variable-RIS occurring as the
argument of a = or 6∈ or un constraint in the input formula:
X 6= A→ (x ∈ X ∧ x /∈ A) ∨ (x ∈ A ∧ x /∈ X)

8

9 Rule applicability tables

The following tables show in a compact way which rewriting rules are applied for each possible
combination of the different constraint arguments.

It turns out that all possible constraint literals are either in solved form or are rewritten by
some rewrite rule. On the other hand, each rewrite rule is applied to a constraint literal of some
kind.

9.1 = and 6= constraints

= ∅ {b tB} X2 {∅ | G •H} {{e t E} | G •H} {Ē | G •H}
∅ 1 8 3 1 15 SF3

{a tA} 7 10 (9) 3 7 15 15

X1 6 (SF1) 6 (4, 5, SF2) 6 (2, SF2) 6(SF1) 15 6(SF1)

{∅ | F • P} 1 8 3 1 15 SF3

{{d tD} | F • P} 11 12 12 11 12 12

{X | F • P} SF3 14(13) 3 SF3 15 SF4

6= ∅ {b tB} X2 {∅ | G •H} {{e t E} | G •H} {Ē | G •H}
∅ 1 6 3 1 10 10

{a tA} 7 8 3 7 10 10

X1 SF1 5 (4, SF1) SF1 10 10 10

{∅ | F • P} 1 6 9 1 9 9

{{d tD} | F • P} 9 9 9 9 9 9

{X | F • P} 9 9 9 9 9 9

9.2 ∈ and 6∈ constraints

t ∈ A1 ∅ {b tB} X2 {∅ | G •H} {{e t E} | G •H} {Ē | G •H}
t 1 2 3 1 4 4

t /∈ A1 ∅ {b tB} X2 {∅ | G •H} {{e t E} | G •H} {Ē | G •H}
t 1 2 SF1 (3) 1 4 SF1

9.3 ‖ constraint

‖ ∅ {b tB} X2 {∅ | G •H} {{e t E} | G •H} {Ē | G •H}
∅ 2 3 3 2 3 3

{a tA} 2 4 5 2 5 5

X1 2 4 SF1(1) 2 6 SF1

{∅ | F • P} 2 3 3 2 3 3

{{d tD} | F • P} 2 4 7 2 6 7

{X | F • P} 2 4 SF1 2 6 SF1

9

9.4 un constraint

un all cases

un(A,B, ∅) 2

un(A,B, {∅ | F • P}) 2

un(A,B, {a tA}) 7

un(A,B, {{d tD} | F • P}) 8

un(A1, A2, X3) ∅ {b tB} X2 {∅ | G •H} {{e t E} | G •H} {Ē | G •H}
∅ 3 3 3 3 3 3

{a tA} 4 5 5 4 5 5

X1 4 6 SF1 4 8 SF1

{∅ | F • P} 3 3 3 3 3 3

{{d tD} | F • P} 4 6 8 4 8 8

{X | F • P} 4 6 SF1 4 8 SF1

un(A1, A2, {X ′ | F ′ •G′}) ∅ {b tB} X2 {∅ | G •H} {{e t E} | G •H} {Ē | G •H}
∅ 3 3 3 3 3 3

{a tA} 4 5 5 4 5 5

X1 4 6 SF1 4 8 SF1

{∅ | F • P} 3 3 3 3 3 3

{{d tD} | F • P} 4 6 8 4 8 8

{X | F • P} 4 6 SF1 4 8 SF1

10

